Evolutionary MCMC Sampling and Optimization in Discrete Spaces
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[3] D. Heckerman,et al. ,81. Introduction , 2022 .
[4] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[5] David E. Goldberg,et al. Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..
[6] Rich Caruana,et al. Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.
[7] R. Storn,et al. Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .
[8] Pedro Larrañaga,et al. Genetic Algorithms: Bridging the Convergence Gap , 1999, Theor. Comput. Sci..
[9] Michael I. Jordan,et al. Variational Probabilistic Inference and the QMR-DT Network , 2011, J. Artif. Intell. Res..
[10] D. Goldberg,et al. BOA: the Bayesian optimization algorithm , 1999 .
[11] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[12] W. Wong,et al. Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .
[13] Malcolm J. A. Strens,et al. Markov Chain Monte Carlo Sampling using Direct Search Optimization , 2002, ICML.