Performance of k-means based satellite image clustering in RGB and HSV color space

This paper throws a light on the available clustering techniques and algorithms, k-means is used to cluster standard and satellite image in RGB and HSV color space. Normally satellite images comes with data and noises, in order to extract meaningful information efficiently there is a need of image clustering and performance of clustering based on pixel classification is greatly affected by the color space we selected, because image analysis in terms of Red, Green and Blue components is more difficult as compared to in terms of hue, saturation and value in context of differentiation an object. Our analysis of image clustering in two different color spaces using the k-means technique shows that clustering performance decreases with RGB color space when compared to HSV color space. CHI, DBI and SE indexes are calculated and compared.

[1]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[2]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[3]  Ujjwal Maulik,et al.  Ensemble based rough fuzzy clustering for categorical data , 2015, Knowl. Based Syst..

[4]  James M. Keller,et al.  A fuzzy K-nearest neighbor algorithm , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  B B B X R X X,et al.  MMR : AN ALGORITHM FOR CLUSTERING CATEGORICAL DATA USING ROUGH SET THEORY , 2007 .

[7]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[8]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[9]  Pawan Lingras,et al.  Interval Set Clustering of Web Users with Rough K-Means , 2004, Journal of Intelligent Information Systems.

[10]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[11]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[12]  B. K. Tripathy,et al.  MMeR: an algorithm for clustering heterogeneous data using rough set theory , 2009 .

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Alexander Hinneburg,et al.  DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation , 2007, IDA.

[15]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[16]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Lior Rokach,et al.  Clustering Methods , 2005, The Data Mining and Knowledge Discovery Handbook.

[18]  Alok N. Choudhary,et al.  Adaptive Grids for Clustering Massive Data Sets , 2001, SDM.

[19]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[20]  Krista Rizman Zalik,et al.  An efficient k 0-means clustering algorithm , 2008 .

[21]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[22]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[23]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[24]  Jim Z. C. Lai,et al.  Rough clustering using generalized fuzzy clustering algorithm , 2013, Pattern Recognit..

[25]  B.K. Tripathy,et al.  SDR: An algorithm for clustering categorical data using rough set theory , 2011, 2011 IEEE Recent Advances in Intelligent Computational Systems.

[26]  Ian F. C. Smith,et al.  A Bounded Index for Cluster Validity , 2007, MLDM.

[27]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[28]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[29]  Ganapati Panda,et al.  A survey on nature inspired metaheuristic algorithms for partitional clustering , 2014, Swarm Evol. Comput..

[30]  Petra Perner,et al.  Machine Learning and Data Mining in Pattern Recognition , 2009, Lecture Notes in Computer Science.

[31]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.