Robust optimization of ORC turbine cascades operating with siloxane MDM

This work presents the application of a robust optimization approach to improve the efficiency of an Organic Rankine Cycle (ORC) cascade subject to uncertain operating conditions. The optimization algorithm is based on the minimization of a high quantile of a random cost function. The system under consideration employs siloxane MDM (Oc-tamethyltrisiloxane) as a working fluid. The thermodynamic behavior of MDM requires the utilization of complex Equations-of-State (EoS) that rely on material-dependent parameters. Discussed here are the aleatory uncertainties affecting both the cascade operating conditions and the fluid model parameters. An uncertainty quantification framework is used to forward propagate the considered uncertainties to some performance estima-tors. The performances of the robust blade design are compared against performances characterizing the optimal design obtained using a deterministic optimization approach. Results show that the quantile-based approach yields to a significant improvement in cascade performance in variable operating conditions.

[1]  Stefano Marelli,et al.  Rare Event Estimation Using Polynomial-Chaos Kriging , 2017 .

[2]  M. Cramer,et al.  Steady, isentropic flows of dense gases , 1991 .

[3]  M. L. G. Oldfield,et al.  An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade , 1990 .

[4]  Vincenzo Dossena,et al.  Robust Adjoint-Based Shape Optimization of Supersonic Turbomachinery Cascades , 2014 .

[5]  Stefano Rebay,et al.  Real-gas effects in Organic Rankine Cycle turbine nozzles , 2008 .

[6]  Giulio Gori,et al.  Non-ideal oblique shock waves , 2018, Journal of Fluid Mechanics.

[7]  Pietro Marco Congedo,et al.  Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties , 2011 .

[8]  Michael B. Giles,et al.  Nonreflecting boundary conditions for Euler equation calculations , 1990 .

[9]  Tim A. Albring,et al.  Fully turbulent discrete adjoint solver for non-ideal compressible flow applications. , 2017 .

[10]  Kwon-Hee Lee,et al.  Th World Congresses of Structural and Multidisciplinary Optimization a Global Robust Optimization Using the Kriging Based Approximation Model , 2022 .

[11]  Pietro Marco Congedo,et al.  Numerical investigation of dense-gas effects in turbomachinery , 2011 .

[12]  Rémi Abgrall,et al.  TSI metamodels-based multi-objective robust optimization , 2013 .

[13]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[14]  F. Menter ZONAL TWO EQUATION k-w TURBULENCE MODELS FOR AERODYNAMIC FLOWS , 1993 .

[15]  Giacomo Bruno Azzurro Persico,et al.  Adjoint Method for Shape Optimization in Real-Gas Flow Applications , 2015 .

[16]  Guillermo Paniagua,et al.  Effects of blunt trailing edge flow discharge in supersonic regime , 2013 .

[17]  Pietro Marco Congedo,et al.  Quantification of Thermodynamic Uncertainties in Real Gas Flows , 2009 .

[18]  Antti Uusitalo,et al.  Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future , 2015 .

[19]  Paola Cinnella,et al.  Robust optimization of supersonic ORC nozzle guide vanes , 2017 .

[20]  Pietro Marco Congedo,et al.  Sensitivity analysis of dense gas flow simulations to thermodynamic uncertainties , 2011 .

[21]  Juan J. Alonso,et al.  Extension of the SU2 open source CFD code to the simulation of turbulent flows of fuids modelled with complex thermophysical laws , 2015 .

[22]  Paola Cinnella,et al.  Robust optimization of an Organic Rankine Cycle for heavy duty engine waste heat recovery , 2017 .

[23]  John D. Denton,et al.  The Trailing Edge Loss of Transonic Turbine Blades , 1989 .

[24]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[25]  Giacomo Bruno Azzurro Persico,et al.  AUTOMATIC DESIGN OF ORC TURBINE PROFILES USING EVOLUTIONARY ALGORITHMS , 2015 .

[26]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[27]  Giulio Gori,et al.  Non-ideal compressible-fluid effects in oblique shock waves , 2017 .

[28]  Andrew P. S. Wheeler,et al.  The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance , 2013 .

[29]  Alberto Guardone,et al.  Multiparameter equations of state for siloxanes: [(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i=1,…,3, and [O-Si-(CH3)2]6 , 2008 .

[30]  Thomas D. Economon,et al.  Adjoint-based fluid dynamic design optimization in quasi-periodic unsteady flow problems using a harmonic balance method , 2018, J. Comput. Phys..

[31]  Paola Cinnella,et al.  Bayesian quantification of thermodynamic uncertainties in dense gas flows , 2015, Reliab. Eng. Syst. Saf..

[32]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[33]  Rémi Abgrall,et al.  High-order statistics in global sensitivity analysis: Decomposition and model reduction , 2016 .

[34]  Günter H. Schnerr,et al.  Diabatic supersonic flows of dense gases , 1991 .

[35]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[36]  Rodolphe Le Riche,et al.  Simultaneous kriging-based estimation and optimization of mean response , 2013, J. Glob. Optim..

[37]  Rene Pecnik,et al.  Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design , 2013 .

[38]  Giulio Gori,et al.  Experimental assessment of the open- source SU2 CFD suite for ORC applications , 2017 .

[39]  Roland Span,et al.  Speed of Sound Measurements and Fundamental Equations of State for Octamethyltrisiloxane and Decamethyltetrasiloxane , 2017 .

[40]  Pradeep Dubey,et al.  Performance optimizations for scalable implicit RANS calculations with SU2 , 2016 .

[41]  Jerome P. Jarrett,et al.  Horsetail matching: a flexible approach to optimization under uncertainty* , 2017 .