Optical properties of δ-Bi2O3 thin films grown by reactive sputtering

The optical properties of δ-Bi2O3 thin films were investigated using spectroscopic ellipsometry and optical absorption spectrum. δ-Bi2O3 thin films were grown on Si and quartz substrates under different oxygen flow ratios (OFR) by radio frequency reactive magnetron sputtering. The Tauc-Lorentz dispersion method was adopted to model the optical dispersion functions of the thin films. The optical bandgap was obtained by three different methods. It was found that refractive index and extinction coefficient decrease, and the optical bandgap has a slight blue shift with increasing the OFR. Factors influencing the optical constants and optical bandgap are discussed.

[1]  B. Johansson,et al.  Random conductivity of δ-Bi2O3 films , 2005 .

[2]  Shumsky,et al.  Electrodeposited ceramic single crystals , 1999, Science.

[3]  Fritz Aldinger,et al.  Bismuth based oxide electrolytes— structure and ionic conductivity , 1999 .

[4]  G. Baud,et al.  Photoprotective zinc oxide coatings on polyethylene terephthalate films , 2001 .

[5]  Byoung Hun Lee,et al.  Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties , 2002 .

[6]  M. Prudenziati,et al.  Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3 , 1997, Powder Diffraction.

[7]  Meilin Liu,et al.  Spectroscopic ellipsometry characterization of nitrogen-incorporated HfO2 gate dielectrics grown by radio-frequency reactive sputtering , 2005 .

[8]  S. Rhee,et al.  Growth of bismuth oxide films by direct liquid injection-metal organic chemical vapor deposition with Bi(tmhd)3 (tmhd: 2,2,6,6-tetramethyl-3,5-heptanedione) , 2004 .

[9]  A. Visinoiu,et al.  On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition , 2005 .

[10]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[11]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[12]  Z. M. Huang,et al.  Dielectric functions of ferroelectric Bi3.25La0.75Ti3O12 thin films on Si(100) substrates , 2003 .

[13]  Z. Fan,et al.  Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation , 2005 .

[14]  V. Kharton,et al.  Research on the electrochemistry of oxygen ion conductors in the former Soviet Union , 2000 .

[15]  C. Clerc,et al.  Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements , 2004 .

[16]  Stergios Logothetidis,et al.  Structure-dependent electronic properties of nanocrystalline cerium oxide films , 2003 .

[17]  Katsuki Higaki,et al.  Highly Selective NO Detection Using Bi2 O 3 ‐ Based Materials , 1999 .

[18]  Fuxi Gan,et al.  Optical nonlinearity of Bi2O3 nanoparticles studied by Z-scan technique , 1997 .

[19]  L. Y. Chen,et al.  Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films , 2003 .

[20]  G. Rusu,et al.  Optical properties of bismuth trioxide thin films , 2001 .

[21]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[22]  W. Göpel,et al.  Oxide ion conducting solid electrolytes based on Bi2O3 , 1996 .

[23]  M. Wuttig,et al.  Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering , 2002 .

[24]  W. White,et al.  Raman spectra of oxides with the fluorite structure , 1973 .

[25]  G. Marin,et al.  TiO2 films prepared by DC magnetron sputtering from ceramic targets , 2002 .

[26]  A. Agasiev,et al.  Photoelectrical properties of δ-Bi2O3 thin films , 1986 .