Overview on corrosion in supercritical fluids

Abstract Whatever the supercritical fluid is, the performance of structural materials is a key issue for industrial applications. An overview is carried out on the corrosion behavior of metallic metals and alloys under pressure and temperature conditions appropriate for supercritical fluids. Steels, including stainless steels, and nickel base alloys are the main alloys investigated in supercritical environments. In supercritical water (SCW), the review highlights how SCW density changes the corrosion mechanisms. Beside the density, temperature and impurities (especially chlorine) play key roles. SCW oxidation is promised to a strong development if corrosion issues are solved, as illustrated with the DELOS process (French acronym for destruction of organic fluids) applied to radioactive organics. At low temperatures, in supercritical fluids like supercritical CO 2 , authors observed that no corrosion occurs in pure fluids but the water content is a key parameter. Temperature, water and pollutants are the major factors leading to increase the uniform or localized corrosion rates.

[1]  Lili Qian,et al.  Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen , 2015 .

[2]  M. Tabarant,et al.  Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation , 2015 .

[3]  T. Yeh,et al.  Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 °C , 2014 .

[4]  D. Young,et al.  Carburisation of ferritic Fe-Cr alloys by low carbon activity gases , 2011 .

[5]  M. Anderson,et al.  Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment , 2013 .

[6]  Glenn T. Hong,et al.  Corrosion control methods in supercritical water oxidation and gasification processes , 2009 .

[7]  A. Kimura,et al.  High Burnup Fuel Cladding Materials R&D for Advanced Nuclear Systems , 2007 .

[8]  F. Rouillard,et al.  Corrosion of 9Cr Steel in CO2 at Intermediate Temperature III: Modelling and Simulation of Void-induced Duplex Oxide Growth , 2012, Oxidation of Metals.

[9]  M. Anderson,et al.  Corrosion resistance of PM2000 ODS steel in high temperature supercritical carbon dioxide , 2015 .

[10]  E. U. Franck Physicochemical properties of supercritical solvents , 1984 .

[11]  D. Féron Nuclear corrosion science and engineering , 2012 .

[12]  Ying Yang,et al.  Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water , 2006 .

[13]  W. Stein,et al.  Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature , 2015, Oxidation of Metals.

[14]  R. J. Harris,et al.  OXIDATION OF RIMMING STEELS IN CARBON DIOXIDE ATMOSPHERES. , 1969 .

[15]  Ivan S. Cole,et al.  Aqueous Corrosion Testing and Neural Network Modeling to Simulate Corrosion of Supercritical CO2 Pipelines in the Carbon Capture and Storage Cycle , 2013 .

[16]  M. Aritomi,et al.  Compatibility of FBR structural materials with supercritical carbon dioxide , 2011 .

[17]  Jingli Luo,et al.  Stability of MgO-, CeO2- and SiO2-doped Cr2O3 ceramics in high-temperature supercritical water , 2014 .

[18]  G. Was,et al.  Oxidation of ferritic–martensitic alloys T91, HCM12A and HT-9 in supercritical water , 2007 .

[19]  Seyed Morteza Sabet,et al.  Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water , 2015 .

[20]  W. Cook,et al.  Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions , 2012 .

[21]  D. Guzonas,et al.  Cycle chemistry and its effect on materials in a supercritical water-cooled reactor: A synthesis of current understanding , 2012 .

[22]  J. Keiser,et al.  Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2 , 2015 .

[23]  F. Rouillard,et al.  Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation , 2012, Oxidation of Metals.

[24]  W. J. Quadakkers,et al.  Non-steady state carburisation of martensitic 9–12%Cr steels in CO2 rich gases at 550 °C , 2014 .

[25]  A. F. Armor,et al.  A critical look at supercritical power plants , 2004 .

[26]  F. Charton,et al.  Corrosion Behavior of Different Metallic Materials in Supercritical Carbon Dioxide at 550°C and 250 bars , 2011 .

[27]  M. Anderson,et al.  Corrosion of austenitic alloys in high temperature supercritical carbon dioxide , 2012 .

[28]  S. Nešić,et al.  Corrosion Behavior of API 5L X65 Carbon Steel Under Supercritical and Liquid Carbon Dioxide Phases in the Presence of Water and Sulfur Dioxide , 2013 .

[29]  G. Was,et al.  Stress Corrosion Crack Growth in Type 316 Stainless Steel in Supercritical Water , 2007 .

[30]  E. Asselin,et al.  Corrosion of nickel–chromium alloys, stainless steel and niobium at supercritical water oxidation conditions , 2010 .

[31]  K. Wolski,et al.  Influence of CO2 purity on the oxidation of a 12Cr ferritic – martensitic steel at 550°C and importance of the initial stage , 2012 .

[32]  A. Kimura,et al.  Corrosion properties of oxide dispersion strengthened steels in super-critical water environment , 2004 .

[33]  Peter Kritzer,et al.  Corrosion in high-temperature and supercritical water and aqueous solutions: a review , 2004 .

[34]  Karsten Pruess,et al.  CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar , 2003 .

[35]  M. Tabarant,et al.  Corrosion of 9Cr Steel in CO2 at Intermediate Temperature II: Mechanism of Carburization , 2012, Oxidation of Metals.

[36]  Yoon-Seok Choi,et al.  Effect Of Impurities On The Corrosion Behavior Of Carbon Steel In Supercritical CO2 - Water Environments , 2009 .

[37]  Yoon-Seok Choi,et al.  Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments. , 2010, Environmental science & technology.

[38]  G. B. Gibbs,et al.  The influence of metal lattice vacancies on the oxidation of high temperature materials , 1977 .

[39]  F. Rouillard,et al.  Oxidation and carburizing of FBR structural materials in carbon dioxide , 2015 .

[40]  Yutaka Watanabe,et al.  Corrosion behaviour of nickel base alloys and 316 stainless steel in supercritical water under alkaline conditions , 2005 .

[41]  E. U. Franck Physicochemical Properties of Supercritical Solvents (Invited Lecture) , 1984 .

[42]  S. Sarrade,et al.  A new reactor concept for hydrothermal oxidation , 2004 .

[43]  K. Sridharan,et al.  Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation , 2008 .

[44]  Günter Schmitt,et al.  Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control , 2009 .

[45]  Mark H. Anderson,et al.  Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide , 2011 .

[46]  Ivan S. Cole,et al.  A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes , 2014 .

[47]  Shuzhong Wang,et al.  Corrosion Behavior of Ni-Based Alloys in Supercritical Water Containing High Concentrations of Salt and Oxygen , 2013 .

[48]  S. Teysseyre Corrosion issues in supercritical water reactor (SCWR) systems , 2012 .

[49]  K. Sridharan,et al.  Corrosion behavior of ferritic–martensitic steel T91 in supercritical water , 2006 .

[50]  R. Marr,et al.  Use of supercritical fluids for different processes including new developments—a review , 2000 .

[51]  S. Nešić,et al.  Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO2 geologic storage environments: An experimental study , 2014 .

[52]  N. Robert Sorensen,et al.  Corrosive effects of supercritical carbon dioxide and cosolvents on metals , 1996 .

[53]  R. Gabbrielli,et al.  Supercritical water oxidation of coal in power plants with low CO2 emissions , 2009 .

[54]  H. Lee,et al.  Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment , 2015 .

[55]  M. C. Cox,et al.  A chemical diffusion model for partitioning of transition elements in oxide scales on alloys , 1972 .

[56]  V. Barnier,et al.  Selective Oxidation of Chromium by O2 Impurities in CO2 During Initial Stages of Oxidation , 2013, Oxidation of Metals.

[57]  F. Rouillard,et al.  Corrosion of 9-12Cr ferritic–martensitic steels in high-temperature CO2 , 2016 .

[58]  N. Birbilis,et al.  Effect of Processing on Grain Size and Corrosion of AA2024-T3 , 2011 .