Strategies for Designing and Monitoring Malaria Vaccines Targeting Diverse Antigens

After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.

[1]  J. Bailey,et al.  Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens , 2014, PLoS neglected tropical diseases.

[2]  N. D. Djadid,et al.  Population genetics and natural selection in the gene encoding the Duffy binding protein II in Iranian Plasmodium vivax wild isolates. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[3]  Morakot Kaewthamasorn,et al.  Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1 , 2014, Malaria Journal.

[4]  M. Foley,et al.  Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1 , 2013, PLoS pathogens.

[5]  A. Barry,et al.  Escaping the immune system: How the malaria parasite makes vaccine development a challenge. , 2013, Trends in parasitology.

[6]  R. Newman,et al.  Malaria vaccine technology roadmap , 2013, The Lancet.

[7]  O. Doumbo,et al.  Extended Safety, Immunogenicity and Efficacy of a Blood-Stage Malaria Vaccine in Malian Children: 24-Month Follow-Up of a Randomized, Double-Blinded Phase 2 Trial , 2013, PloS one.

[8]  M. Galinski,et al.  Naturally Acquired Immune Responses to P. vivax Merozoite Surface Protein 3α and Merozoite Surface Protein 9 Are Associated with Reduced Risk of P. vivax Malaria in Young Papua New Guinean Children , 2013, PLoS neglected tropical diseases.

[9]  J. Simpson,et al.  Implications of the licensure of a partially efficacious malaria vaccine on evaluating second-generation vaccines , 2013, BMC Medicine.

[10]  P. Siba,et al.  Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) , 2013, PLoS neglected tropical diseases.

[11]  Kevin Marsh,et al.  Erratum: Corrigendum: The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody , 2013 .

[12]  J. Adams,et al.  Immunogenicity of single versus mixed allele vaccines of Plasmodium vivax Duffy binding protein region II. , 2013, Vaccine.

[13]  Nancy Fullman,et al.  The changing epidemiology of malaria elimination: new strategies for new challenges , 2013, The Lancet.

[14]  K. Lindblade,et al.  Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya , 2013, Malaria Journal.

[15]  Madhumita Basu,et al.  Natural selection and population genetic structure of domain-I of Plasmodium falciparum apical membrane antigen-1 in India. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[16]  Danny W. Wilson,et al.  Erythrocyte-Binding Antigens of Plasmodium falciparum Are Targets of Human Inhibitory Antibodies and Function To Evade Naturally Acquired Immunity , 2013, The Journal of Immunology.

[17]  A. Cowman,et al.  Identification and Prioritization of Merozoite Antigens as Targets of Protective Human Immunity to Plasmodium falciparum Malaria for Vaccine and Biomarker Development , 2013, The Journal of Immunology.

[18]  N. D. Djadid,et al.  Population genetics, sequence diversity and selection in the gene encoding the Plasmodium falciparum apical membrane antigen 1 in clinical isolates from the south-east of Iran. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[19]  M. Theisen,et al.  Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil , 2013, Memorias do Instituto Oswaldo Cruz.

[20]  D. Kaslow,et al.  Malaria vaccine R&D in the Decade of Vaccines: breakthroughs, challenges and opportunities. , 2013, Vaccine.

[21]  P. Udagama,et al.  Population genetic structure of the Plasmodium vivax circumsporozoite protein (Pvcsp) in Sri Lanka. , 2013, Gene.

[22]  X. Su,et al.  Anti-Pfs25 Human Plasma Reduces Transmission of Plasmodium falciparum Isolates That Have Diverse Genetic Backgrounds , 2013, Infection and Immunity.

[23]  A. Thomas,et al.  Diversity Covering AMA1-MSP119 Fusion Proteins as Malaria Vaccines , 2013, Infection and Immunity.

[24]  T. Jombart,et al.  Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. , 2013, Vaccine.

[25]  V. A. Stewart,et al.  Immune mechanisms in malaria: new insights in vaccine development , 2013, Nature Medicine.

[26]  O. Doumbo,et al.  Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications. , 2013, The Journal of infectious diseases.

[27]  J. Rayner,et al.  A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants , 2013, Vaccine.

[28]  J. Stockman A Field Trial to Assess a Blood-Stage Malaria Vaccine , 2013 .

[29]  J. Stockman First Results of Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Children , 2013 .

[30]  Jae-Won Park,et al.  Genetic diversity and natural selection of Duffy binding protein of Plasmodium vivax Korean isolates. , 2013, Acta tropica.

[31]  G. Yan,et al.  Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci. , 2013, Acta tropica.

[32]  Q. Bassat,et al.  Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 1-5 years of age. , 2012, The Journal of infectious diseases.

[33]  Jorge Coello,et al.  Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras , 2012, Malaria Journal.

[34]  C. King,et al.  Finding the sweet spots of inhibition: understanding the targets of a functional antibody against Plasmodium vivax Duffy binding protein. , 2012, International journal for parasitology.

[35]  Danny W. Wilson,et al.  The Plasmodium falciparum Erythrocyte Invasion Ligand Pfrh4 as a Target of Functional and Protective Human Antibodies against Malaria , 2012, PloS one.

[36]  David L. Smith,et al.  A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010 , 2012, PLoS neglected tropical diseases.

[37]  D. Serre,et al.  Whole Genome Sequencing of Field Isolates Provides Robust Characterization of Genetic Diversity in Plasmodium vivax , 2012, PLoS neglected tropical diseases.

[38]  Y. D. Sharma,et al.  Genetic Variation in the Plasmodium falciparum Circumsporozoite Protein in India and Its Relevance to RTS,S Malaria Vaccine , 2012, PloS one.

[39]  J. Bailey,et al.  Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe, Malawi. , 2012, The Journal of infectious diseases.

[40]  B. M. Sanchez,et al.  Plasmodium vivax Duffy binding protein: baseline antibody responses and parasite polymorphisms in a well‐consolidated settlement of the Amazon Region , 2012, Tropical medicine & international health : TM & IH.

[41]  Danny W. Wilson,et al.  Biochemical and Functional Analysis of Two Plasmodium falciparum Blood-Stage 6-Cys Proteins: P12 and P41 , 2012, PloS one.

[42]  A. Holder,et al.  Recombinant Viral-Vectored Vaccines Expressing Plasmodium chabaudi AS Apical Membrane Antigen 1: Mechanisms of Vaccine-Induced Blood-Stage Protection , 2012, The Journal of Immunology.

[43]  A. Vaughan,et al.  Whole parasite vaccination approaches for prevention of malaria infection. , 2012, Trends in immunology.

[44]  A. Barry,et al.  Using Population Genetics to Guide Malaria Vaccine Design , 2012 .

[45]  T. Horii,et al.  Geographic differentiation of polymorphism in the Plasmodium falciparum malaria vaccine candidate gene SERA5. , 2012, Vaccine.

[46]  Sheel Shah,et al.  Sequence Polymorphism, Segmental Recombination and Toggling Amino Acid Residues within the DBL3X Domain of the VAR2CSA Placental Malaria Antigen , 2012, PloS one.

[47]  A. Escalante,et al.  Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax , 2012, Malaria Journal.

[48]  Jung-Mi Kang,et al.  Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates , 2012, Malaria Journal.

[49]  B. Genton,et al.  A review of malaria vaccine clinical projects based on the WHO rainbow table , 2012, Malaria Journal.

[50]  K. Marsh,et al.  Correction: Corrigendum: The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody , 2011, Nature Communications.

[51]  R. Sauerwein,et al.  Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans , 2011, PLoS pathogens.

[52]  A. Hill Vaccines against malaria , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[53]  Dominic P. Kwiatkowski,et al.  BASIGIN is a receptor essential for erythrocyte invasion by Plasmodium falciparum , 2011, Nature.

[54]  P. Siba,et al.  A new high-throughput method for simultaneous detection of drug resistance associated mutations in Plasmodium vivax dhfr, dhps and mdr1 genes , 2011, Malaria Journal.

[55]  S. Cousens,et al.  Protection against malaria by MSP3 candidate vaccine. , 2011, The New England journal of medicine.

[56]  L. H. Carvalho,et al.  Worldwide Genetic Variability of the Duffy Binding Protein: Insights into Plasmodium vivax Vaccine Development , 2011, PloS one.

[57]  P. Udagama,et al.  Genetic diversity of Plasmodium vivax Duffy Binding Protein II (PvDBPII) under unstable transmission and low intensity malaria in Sri Lanka. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[58]  Kevin Marsh,et al.  A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa , 2011, PloS one.

[59]  Ogobara K. Doumbo,et al.  A Research Agenda to Underpin Malaria Eradication , 2011, PLoS medicine.

[60]  Prashant Yadav,et al.  A Research Agenda for Malaria Eradication: Vaccines , 2011, PLoS medicine.

[61]  P. Siba,et al.  Population genetic analysis of the Plasmodium falciparum 6-cys protein Pf38 in Papua New Guinea reveals domain-specific balancing selection , 2011, Malaria Journal.

[62]  Weiqing Pan,et al.  Diversity and prevalence of the C-terminal region of Plasmodium falciparum merozoite surface protein 1 in China. , 2010, Acta tropica.

[63]  T. Triglia,et al.  Evidence That the Erythrocyte Invasion Ligand PfRh2 is a Target of Protective Immunity against Plasmodium falciparum Malaria , 2010, The Journal of Immunology.

[64]  O. Lund,et al.  Insight into Antigenic Diversity of VAR2CSA-DBL5ε Domain from Multiple Plasmodium falciparum Placental Isolates , 2010, PloS one.

[65]  I. Soares,et al.  A recombinant vaccine based on domain II of Plasmodium vivax Apical Membrane Antigen 1 induces high antibody titres in mice. , 2010, Vaccine.

[66]  D. Conway,et al.  Allelic Diversity and Naturally Acquired Allele-Specific Antibody Responses to Plasmodium falciparum Apical Membrane Antigen 1 in Kenya , 2010, Infection and Immunity.

[67]  W. Keitel,et al.  Safety and Immunogenicity of a Recombinant Nonglycosylated Erythrocyte Binding Antigen 175 Region II Malaria Vaccine in Healthy Adults Living in an Area Where Malaria Is Not Endemic , 2010, Clinical and Vaccine Immunology.

[68]  D. Conway,et al.  Detecting signatures of balancing selection to identify targets of anti-parasite immunity. , 2010, Trends in parasitology.

[69]  X. Su,et al.  Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine , 2010, Malaria Journal.

[70]  D. Conway,et al.  Allele Frequency–Based and Polymorphism-Versus-Divergence Indices of Balancing Selection in a New Filtered Set of Polymorphic Genes in Plasmodium falciparum , 2010, Molecular biology and evolution.

[71]  M. da Silva-Nunes,et al.  Evolutionary dynamics of the immunodominant repeats of the Plasmodium vivax malaria-vaccine candidate circumsporozoite protein (CSP). , 2010, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[72]  Joseph Bockhorst,et al.  Evaluation of the Antigenic Diversity of Placenta-Binding Plasmodium falciparum Variants and the Antibody Repertoire among Pregnant Women , 2010, Infection and Immunity.

[73]  L. Hviid The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development , 2010, Human vaccines.

[74]  Jack S. Richards,et al.  The Relationship between Anti-merozoite Antibodies and Incidence of Plasmodium falciparum Malaria: A Systematic Review and Meta-analysis , 2010, PLoS medicine.

[75]  O. Lund,et al.  Insight into Antigenic Diversity of VAR2CSA-DBL5 epsilon Domain from Multiple Plasmodium falciparum Placental Isolates , 2010 .

[76]  Jung-Mi Kang,et al.  Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar , 2010, Malaria Journal.

[77]  C. Buckee,et al.  Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum , 2009, PloS one.

[78]  Adrian J F Luty,et al.  Protection against a malaria challenge by sporozoite inoculation. , 2009, The New England journal of medicine.

[79]  J. Barnwell,et al.  High Antibody Titer against Apical Membrane Antigen-1 Is Required to Protect against Malaria in the Aotus Model , 2009, PloS one.

[80]  A. Thomas,et al.  Humoral Immune Response to Mixed PfAMA1 Alleles; Multivalent PfAMA1 Vaccines Induce Broad Specificity , 2009, PloS one.

[81]  M. P. Cummings,et al.  Extreme Polymorphism in a Vaccine Antigen and Risk of Clinical Malaria: Implications for Vaccine Development , 2009, Science Translational Medicine.

[82]  C. Plowe,et al.  Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’ , 2009, Parasite immunology.

[83]  J. Baird,et al.  Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. , 2009, The Lancet. Infectious diseases.

[84]  D. Conway,et al.  Prospective Identification of Malaria Parasite Genes under Balancing Selection , 2009, PloS one.

[85]  J. Richards,et al.  The future for blood‐stage vaccines against malaria , 2009, Immunology and cell biology.

[86]  B. Genton,et al.  Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. , 2009, The Journal of infectious diseases.

[87]  T. Theander,et al.  Induction of Adhesion-Inhibitory Antibodies against Placental Plasmodium falciparum Parasites by Using Single Domains of VAR2CSA , 2009, Infection and Immunity.

[88]  V. A. Stewart,et al.  Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya , 2009, PloS one.

[89]  S. Ralph,et al.  Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. , 2009, International journal for parasitology.

[90]  P. Gilson,et al.  Immunoglobulin G Subclass-Specific Responses against Plasmodium falciparum Merozoite Antigens Are Associated with Control of Parasitemia and Protection from Symptomatic Illness , 2009, Infection and Immunity.

[91]  C. Withers-Martinez,et al.  An Inhibitory Antibody Blocks Interactions between Components of the Malarial Invasion Machinery , 2009, PLoS pathogens.

[92]  Arlo Z. Randall,et al.  Profiling humoral immune responses to P. falciparum infection with protein microarrays , 2008, Proteomics.

[93]  K. Marsh,et al.  Acquisition of Growth-Inhibitory Antibodies against Blood-Stage Plasmodium falciparum , 2008, PloS one.

[94]  Danny W. Wilson,et al.  Antibody-Mediated Growth Inhibition of Plasmodium falciparum: Relationship to Age and Protection from Parasitemia in Kenyan Children and Adults , 2008, PloS one.

[95]  M. Fay,et al.  Protection Induced by Plasmodium falciparum MSP142 Is Strain-Specific, Antigen and Adjuvant Dependent, and Correlates with Antibody Responses , 2008, PloS one.

[96]  C. Chitnis,et al.  Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection , 2008, Proceedings of the National Academy of Sciences.

[97]  Sergei L. Kosakovsky Pond,et al.  Population structure of the genes encoding the polymorphic Plasmodium falciparum apical membrane antigen 1: Implications for vaccine design , 2008, Proceedings of the National Academy of Sciences.

[98]  A. Thomas,et al.  A Diversity-Covering Approach to Immunization with Plasmodium falciparum Apical Membrane Antigen 1 Induces Broader Allelic Recognition and Growth Inhibition Responses in Rabbits , 2008, Infection and Immunity.

[99]  C. Putaporntip,et al.  Positive selection on the Plasmodium falciparum sporozoite threonine-asparagine-rich protein: analysis of isolates mainly from low endemic areas. , 2008, Gene.

[100]  David L. Smith,et al.  Strain theory of malaria: the first 50 years. , 2008, Advances in parasitology.

[101]  David L. Smith,et al.  Strain theory of malaria: the first 50 years. , 2008, Advances in parasitology.

[102]  B. Genton,et al.  Asexual blood-stage malaria vaccine development: facing the challenges , 2007, Current opinion in infectious diseases.

[103]  A. Batchelor,et al.  Structural basis of antigenic escape of a malaria vaccine candidate , 2007, Proceedings of the National Academy of Sciences.

[104]  P. Newton,et al.  Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. , 2007, International journal for parasitology.

[105]  David L. Smith,et al.  Dynamics of Polymorphism in a Malaria Vaccine Antigen at a Vaccine-Testing Site in Mali , 2007, PLoS medicine.

[106]  M. Alpers,et al.  Effect of the malaria vaccine Combination B on merozoite surface antigen 2 diversity. , 2007, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[107]  L. Excoffier,et al.  Computer programs for population genetics data analysis: a survival guide , 2006, Nature Reviews Genetics.

[108]  Hong Zhou,et al.  Immunity to Recombinant Plasmodium falciparum Merozoite Surface Protein 1 (MSP1): Protection in Aotus nancymai Monkeys Strongly Correlates with Anti-MSP1 Antibody Titer and In Vitro Parasite-Inhibitory Activity , 2006, Infection and Immunity.

[109]  N. Maire,et al.  Comparison of PCR-RFLP and Genescan-based genotyping for analyzing infection dynamics of Plasmodium falciparum. , 2006, The American journal of tropical medicine and hygiene.

[110]  G. Snounou,et al.  Circumsporozoite protein gene diversity among temperate and tropical Plasmodium vivax isolates from Iran , 2006, Tropical medicine & international health : TM & IH.

[111]  M. Foley,et al.  The Most Polymorphic Residue on Plasmodium falciparum Apical Membrane Antigen 1 Determines Binding of an Invasion-Inhibitory Antibody , 2006, Infection and Immunity.

[112]  K. Marsh,et al.  Immune effector mechanisms in malaria , 2006, Parasite immunology.

[113]  Malcolm J. McConville,et al.  Distinct Protein Classes Including Novel Merozoite Surface Antigens in Raft-like Membranes of Plasmodium falciparum* , 2005, Journal of Biological Chemistry.

[114]  Aditi Gupta,et al.  Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  J. Barnwell,et al.  The Clinical-Grade 42-Kilodalton Fragment of Merozoite Surface Protein 1 of Plasmodium falciparum Strain FVO Expressed in Escherichia coli Protects Aotus nancymai against Challenge with Homologous Erythrocytic-Stage Parasites , 2005, Infection and Immunity.

[116]  Weltgesundheitsorganisation World malaria report , 2005 .

[117]  J. Roberts,et al.  A retrospective examination of reinfection of humans with Plasmodium vivax. , 2004, The American journal of tropical medicine and hygiene.

[118]  J R Yates,et al.  Utilization of genomic sequence information to develop malaria vaccines , 2003, Journal of Experimental Biology.

[119]  D. Hartl,et al.  DNA sequence artifacts and the estimation of time to the most recent common ancestor (TMRCA) of Plasmodium falciparum. , 2003, Molecular and biochemical parasitology.

[120]  Thomas Lavstsen,et al.  Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria , 2003, Molecular microbiology.

[121]  B. Keegan,et al.  Vaccination of Monkeys with Recombinant Plasmodium falciparum Apical Membrane Antigen 1 Confers Protection against Blood-Stage Malaria , 2002, Infection and Immunity.

[122]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[123]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[124]  Patricia De la Vega,et al.  Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. , 2002, The Journal of infectious diseases.

[125]  Thomas A. Smith,et al.  A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. , 2002, The Journal of infectious diseases.

[126]  J. R. Scotti,et al.  Available From , 1973 .

[127]  J. T. Williams,et al.  Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. , 2000, Molecular biology and evolution.

[128]  M. Alpers,et al.  Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea , 2000, Parasitology.

[129]  D. Conway,et al.  A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses , 2000, Nature Medicine.

[130]  R. Ménard,et al.  Green Fluorescent Protein as a Marker in Plasmodium berghei Transformation , 1999, Infection and Immunity.

[131]  Kevin Marsh,et al.  Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria , 1998, Nature Medicine.

[132]  A. Holder,et al.  Immunization with a recombinant C-terminal fragment of Plasmodium yoelii merozoite surface protein 1 protects mice against homologous but not heterologous P. yoelii sporozoite challenge , 1997, Infection and immunity.

[133]  R. Moritz,et al.  The Disulfide Bond Structure of Plasmodium Apical Membrane Antigen-1* , 1996, The Journal of Biological Chemistry.

[134]  E. Riley,et al.  Human antibody response to Plasmodium falciparum merozoite surface protein 2 is serogroup specific and predominantly of the immunoglobulin G3 subclass , 1995, Infection and Immunity.

[135]  G. di Perri,et al.  Naturally acquired immunity to Plasmodium falciparum , 1991 .

[136]  Melinda Fitzgerald,et al.  Immunol. Cell Biol. , 1995 .

[137]  A. Tartar,et al.  Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. , 1994, Blood.

[138]  S. Hoffman,et al.  Characterization of Plasmodium falciparum sporozoite surface protein 2. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[139]  A. Crisanti,et al.  Expression of thrombospondin-related anonymous protein in Plasmodium falciparum sporozoites , 1992, The Lancet.

[140]  A. Holder,et al.  A malaria merozoite surface protein (MSP1)-structure, processing and function. , 1992, Memorias do Instituto Oswaldo Cruz.

[141]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[142]  A. Waters,et al.  Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen , 1988, Parasite immunology.

[143]  C. Newbold,et al.  A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite , 1988, Nature.

[144]  R. Coppel,et al.  Identification of two integral membrane proteins of Plasmodium falciparum. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[145]  G. Langsley,et al.  A liver-stage-specific antigen of Plasmodium falciparum characterized by gene cloning , 1987, Nature.

[146]  V. Nussenzweig,et al.  Circumsporozoite proteins of malaria parasites , 1985, Cell.

[147]  T. Burkot,et al.  Target antigens of transmission-blocking immunity on gametes of plasmodium falciparum , 1983, The Journal of experimental medicine.

[148]  V. Nussenzweig,et al.  Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. , 1980, Science.

[149]  R. Miller,et al.  Specificity of protection of man immunized against sporozoite‐induced falciparum malaria , 1973, The American journal of the medical sciences.

[150]  J. Vanderberg,et al.  Immunization of man against sporozite-induced falciparum malaria , 1973, The American journal of the medical sciences.

[151]  G M Jeffery,et al.  Epidemiological significance of repeated infections with homologous and heterologous strains and species of Plasmodium. , 1966, Bulletin of the World Health Organization.

[152]  I. McGregor,et al.  Gamma-Globulin and Acquired Immunity to Human Malaria , 1961, Nature.

[153]  W H TALIAFERRO,et al.  Acquired immunity in malaria. , 1948, Abstracts. International Congress on Tropical Medicine and Malaria.

[154]  R. Koch Dritter Bericht über die Thätigkeit der Malaria-Expedition (Schluss aus No. 17.) , 1900 .

[155]  R. Koch Dritter Bericht über die Thätigkeit der Malaria-Expedition , 1900 .