Fabrication and characterization of Th(MoO4)2/TiO2 nanocomposite for potential use in photocatalytic degradation of toxic pollutants

[1]  U. Cvelbar,et al.  Tuned structures and enhanced photoluminescence of WO3- nanomaterials by TiO2 , 2022, Materials Science and Engineering: B.

[2]  Feiyi Liao,et al.  Bridging Effects of Sulfur Anions at Titanium Oxide and Perovskite Interfaces on Interfacial Defect Passivation and Performance Enhancement of Perovskite Solar Cells , 2021, ACS omega.

[3]  F. Krok,et al.  Photoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics , 2021 .

[4]  S. Saranya,et al.  Selectivity, stability and reproducibility effect of CeM - CeO2 modified PIGE electrode for photoelectrochemical behaviour of energy application , 2020 .

[5]  Changha Lee,et al.  Activation of Hydrogen Peroxide by a Titanium Oxide-Supported Iron Catalyst: Evidence for Surface Fe(IV) and Its Selectivity. , 2020, Environmental science & technology.

[6]  Li Fang Chen,et al.  Transition metal oxides dispersed on Ti-MCM-41 hybrid core-shell catalysts for the photocatalytic degradation of Congo red colorant , 2020 .

[7]  Lianqiao Yang,et al.  Acetylcholinesterase Sensor with Patterned Structure for Detecting Organophosphorus Pesticides Based on Titanium Dioxide Sol‐gel Carrier , 2020 .

[8]  M. Trari,et al.  Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light , 2020 .

[9]  Dinh Quang Khieu,et al.  TiO2/Diazonium/Graphene Oxide Composites: Synthesis and Visible-Light-Driven Photocatalytic Degradation of Methylene Blue , 2020 .

[10]  M. Maaza,et al.  Investigation on antibacterial and photocatalytic degradation of Rhodamine-B dye under visible light irradiation by titanium molybdate nanoparticles prepared via microwave method , 2019, Surfaces and Interfaces.

[11]  K. Kaviyarasu,et al.  An investigation of structural, magnetical, optical, antibacterial and humidity sensing of Zr(MoO4)2-ZrO2 nanocomposites , 2019, Surfaces and Interfaces.

[12]  Q. M. Haq.,et al.  Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles , 2019, Journal of the Iranian Chemical Society.

[13]  Dongke Sun,et al.  Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. , 2019, Biosensors & bioelectronics.

[14]  Seokwoo Jeon,et al.  Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. , 2019, Nanoscale.

[15]  C. Cojocaru,et al.  Novel rare earth (RE-La, Er, Sm) metal doped ZnO photocatalysts for degradation of Congo-Red dye: Synthesis, characterization and kinetic studies. , 2019, Journal of environmental management.

[16]  T. Thongtem,et al.  Photoluminescence and photonic absorbance of Ce2(MoO4)3 nanocrystal synthesized by microwave–hydrothermal/solvothermal method , 2018, Rare Metals.

[17]  A. Habibi-Yangjeh,et al.  Facile fabrication of novel ZnO/CoMoO 4 nanocomposites: Highly efficient visible-light-responsive photocatalysts in degradations of different contaminants , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[18]  M. Maaza,et al.  Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4 - Co3O4 nanocomposites and its synthesis and characterization. , 2018, Journal of photochemistry and photobiology. B, Biology.

[19]  Shen-ming Chen,et al.  Detection of Pesticide Residues (Fenitrothion) in Fruit Samples Based On Niobium Carbide@Molybdenum Nanocomposite: An Electrocatalytic Approach. , 2018, Analytica chimica acta.

[20]  S. Farhadi,et al.  Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation , 2018 .

[21]  J. Marty,et al.  Advances in Enzyme-Based Biosensors for Pesticide Detection , 2018, Biosensors.

[22]  Shiwei Lin,et al.  Peroxidase-like activity of Au@TiO 2 yolk-shell nanostructure and its application for colorimetric detection of H 2 O 2 and glucose , 2018 .

[23]  S. Lawan,et al.  Detection of Dichlorvos Residue in Cowpea Grains, Six Months after Application Using High Performance Liquid Chromatography , 2018 .

[24]  Chelladurai Karuppiah,et al.  Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Neurotoxicity Drug Clioquinol by Sn(MoO4)2 Nanoplates. , 2017, ACS applied materials & interfaces.

[25]  L. Nehru,et al.  Synthesis and Characterization of Tio2 Nanoparticles Using Cynodon Dactylon Leaf Extract for Antibacterial and Anticancer (A549 Cell Lines) Activity , 2017 .

[26]  D. Correa,et al.  Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. , 2017, Talanta.

[27]  M. Maaza,et al.  In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method. , 2017, Materials science & engineering. C, Materials for biological applications.

[28]  Chelladurai Karuppiah,et al.  A Study of Electrocatalytic and Photocatalytic Activity of Cerium Molybdate Nanocubes Decorated Graphene Oxide for the Sensing and Degradation of Antibiotic Drug Chloramphenicol. , 2017, ACS applied materials & interfaces.

[29]  A. Lee,et al.  Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red , 2017 .

[30]  J. Vijaya,et al.  Studies on the efficient dual performance of Mn1-xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. , 2016, Journal of photochemistry and photobiology. B, Biology.

[31]  A. Mohammad,et al.  Solar photocatalytic degradation of hazardous Congo red using low-temperature synthesis of zinc oxide nanoparticles , 2016 .

[32]  Mustri Bano,et al.  Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation , 2016 .

[33]  Davies Mwazi Sinyangwe,et al.  Determination of dichlorvos residue levels in vegetables sold in Lusaka, Zambia , 2016, The Pan African medical journal.

[34]  K. Dhanalekshmi,et al.  DNA intercalation studies and antimicrobial activity of Ag@ZrO2 core-shell nanoparticles in vitro. , 2016, Materials science & engineering. C, Materials for biological applications.

[35]  M. A. Zanjanchi,et al.  Photocatalytic activity of TiO₂ nanoparticles synthesized in presence of ammonium hexafluorosilicate. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Sivakumar Thiripuranthagan,et al.  Photocatalytic Degradation of Congored on Silica Supported Ag Impregnated TiO2. , 2015, Journal of nanoscience and nanotechnology.

[37]  S. Nabi,et al.  Synthesis, characterization and photolytic degradation activity of poly-o-toluidine–thorium(IV)molybdophosphate cation exchanger: Analytical application in metal ion treatment , 2015 .

[38]  K. Krishnaveni,et al.  The simultaneous determination of omethoate and dichlorvos pesticides in grain samples using a palladium and graphene composite modified glassy carbon electrode , 2015 .

[39]  M. Radomski,et al.  Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells , 2015, International journal of nanomedicine.

[40]  C. Vani,et al.  Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus , 2015, Applied Nanoscience.

[41]  M. Khairy,et al.  Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes , 2014 .

[42]  G. Sharma,et al.  Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water , 2014 .

[43]  P. Kitsiou,et al.  Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells , 2014, International journal of nanomedicine.

[44]  B. Mamba,et al.  Sulfur/Gadolinium-Codoped TiO2 Nanoparticles for Enhanced Visible-Light Photocatalytic Performance , 2014 .

[45]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[46]  Jean-Louis Marty,et al.  Biosensors for Pesticide Detection: New Trends , 2012 .

[47]  R. Geetha Balakrishna,et al.  Elucidation of Cell Killing Mechanism by Comparative Analysis of Photoreactions on Different Types of Bacteria , 2012, Photochemistry and photobiology.

[48]  S. Kalaivani,et al.  Photocatalytic activity of multielement doped TiO2 in the degradation of congo red , 2012 .

[49]  Shipu Li,et al.  Synthesis of Cerium Molybdate Hierarchical Architectures and Their Novel Photocatalytic and Adsorption Performances , 2011 .

[50]  Mohammed A Meetani,et al.  An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals , 2011 .

[51]  Meera Keskar,et al.  Synthesis and characterization of thallium–thorium molybdates and thallium–uranium (IV) molybdates , 2011 .

[52]  Shurong Wang,et al.  The Preparation and Characterization of La Doped TiO2 Nanotubes and Their Photocatalytic Activity , 2010 .

[53]  Gamal A. E. Mostafa,et al.  Electrochemical Biosensors for the Detection of Pesticides~!2010-02-01~!2010-06-30~!2010-07-21~! , 2010 .

[54]  A. Ahmadi Cytotoxicity and antitumor properties of a marine compound on cancer cells, HESA-A. , 2006 .

[55]  A. Kudo,et al.  Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. , 2006, The journal of physical chemistry. B.

[56]  J. Marty,et al.  An electrochemical bioassay for dichlorvos analysis in durum wheat samples. , 2006, Journal of food protection.

[57]  A. Mellouki,et al.  Atmospheric fate of dichlorvos: photolysis and OH-initiated oxidation studies. , 2006, Environmental science & technology.

[58]  S. Prasad,et al.  Potentiometric and conductometric studies on the formation of thorium molybdates as a function of pH , 2000 .

[59]  P. Gros,et al.  A New Sensor with Increased Lifetime Based on a Mixed Diazonium Thick Film/Gold Nanoparticles Interface for Hg(II) Trace Detection , 2019, Electroanalysis.

[60]  R. Sundaram,et al.  Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications , 2019, Materials Today: Proceedings.

[61]  E. Gumus,et al.  The Cytotoxic Effects of Titanium Oxide Nanoparticle on MDA-MB–231 AND MCF–7 Cells , 2018 .

[62]  G. Benelli,et al.  One-Pot Synthesis of Dysprosium Oxide Nano-Sheets: Antimicrobial Potential and Cyotoxicity on A549 Lung Cancer Cells , 2016, Journal of Cluster Science.

[63]  D. Bosbach,et al.  The structural effects of alkaline- and rare-earth element incorporation into thorium molybdates , 2016 .