Bayesian Community Detection

We introduce a Bayesian estimator of the underlying class structure in the stochastic block model, when the number of classes is known. The estimator is the posterior mode corresponding to a Dirichlet prior on the class proportions, a generalized Bernoulli prior on the class labels, and a beta prior on the edge probabilities. We show that this estimator is strongly consistent when the expected degree is at least of order $\log^2{n}$, where $n$ is the number of nodes in the network.

[1]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[2]  P. Latouche,et al.  Model selection and clustering in stochastic block models with the exact integrated complete data likelihood , 2013, 1303.2962.

[3]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[4]  Jiashun Jin,et al.  FAST COMMUNITY DETECTION BY SCORE , 2012, 1211.5803.

[5]  Kohei Hayashi,et al.  A Tractable Fully Bayesian Method for the Stochastic Block Model , 2016, ArXiv.

[6]  D. F. Saldana,et al.  How Many Communities Are There? , 2014, 1412.1684.

[7]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[8]  J. Daudin,et al.  Classification and estimation in the Stochastic Block Model based on the empirical degrees , 2011, 1110.6517.

[9]  P. Bickel,et al.  Role of normalization in spectral clustering for stochastic blockmodels , 2013, 1310.1495.

[10]  Elchanan Mossel,et al.  Reconstruction and estimation in the planted partition model , 2012, Probability Theory and Related Fields.

[11]  Yongjin Park,et al.  How networks change with time , 2012, Bioinform..

[12]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  A. Rinaldo,et al.  Consistency of spectral clustering in stochastic block models , 2013, 1312.2050.

[15]  Carey E. Priebe,et al.  Empirical Bayes Estimation for the Stochastic Blockmodel , 2014, 1405.6070.

[16]  Chao Gao,et al.  Achieving Optimal Misclassification Proportion in Stochastic Block Models , 2015, J. Mach. Learn. Res..

[17]  Bin Yu,et al.  Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.

[18]  Chris H Wiggins,et al.  Bayesian approach to network modularity. , 2007, Physical review letters.

[19]  P. Bickel,et al.  Likelihood-based model selection for stochastic block models , 2015, 1502.02069.

[20]  Anderson Y. Zhang,et al.  Minimax Rates of Community Detection in Stochastic Block Models , 2015, ArXiv.

[21]  Gwenaël G R Leday,et al.  An empirical Bayes approach to network recovery using external knowledge , 2016, Biometrical journal. Biometrische Zeitschrift.

[22]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[23]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[24]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[25]  Yudong Chen,et al.  Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices , 2014, J. Mach. Learn. Res..

[26]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[27]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[28]  Morten Mørup,et al.  Bayesian Community Detection , 2012, Neural Computation.

[29]  Chao Gao,et al.  Community Detection in Degree-Corrected Block Models , 2016, The Annals of Statistics.

[30]  P. Bickel,et al.  Correction to the proof of consistency of community detection , 2015 .

[31]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[32]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[33]  Jing Lei,et al.  Network Cross-Validation for Determining the Number of Communities in Network Data , 2014, 1411.1715.

[34]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[35]  Ji Zhu,et al.  Consistency of community detection in networks under degree-corrected stochastic block models , 2011, 1110.3854.

[36]  A. Bhattacharya,et al.  Optimal Bayesian estimation in stochastic block models , 2015, 1505.06794.

[37]  Emmanuel Abbe,et al.  Exact Recovery in the Stochastic Block Model , 2014, IEEE Transactions on Information Theory.

[38]  Neil J. Hurley,et al.  Computational Statistics and Data Analysis , 2022 .