A Parallel and Distributed Computing Platform for Neural Networks Using Wireless Sensor Networks

iii

[1]  Ganesh K. Venayagamoorthy,et al.  Computational Intelligence in Wireless Sensor Networks: A Survey , 2011, IEEE Communications Surveys & Tutorials.

[2]  Erkki Mäkinen,et al.  A Neural Network Model to Minimize the Connected Dominating Set for Self-Configuration of Wireless Sensor Networks , 2009, IEEE Transactions on Neural Networks.

[3]  M. Geike,et al.  Emulation engine for spiking neurons and adaptive synaptic weights , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[4]  E. Arsuaga Uriarte,et al.  Topology Preservation in SOM , 2008 .

[5]  David West,et al.  A comparison of SOM neural network and hierarchical clustering methods , 1996 .

[6]  Dharmendra S. Modha,et al.  The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[7]  Ajay K. Sharma,et al.  Comparative Investigations on Performance of Routing Protocols in Presence of Realistic Radio Models for WSNs , 2011 .

[8]  Ryotaro Kamimura Generation of Comprehensible Representations by Supposed Maximum Information , 2010, ICANN.

[9]  G Pfurtscheller,et al.  Discrimination between phase-locked and non-phase-locked event-related EEG activity. , 1995, Electroencephalography and clinical neurophysiology.

[10]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[11]  L. Gould The Cat is Out of the Bag , 1996 .

[12]  Vivian West,et al.  Model selection for a medical diagnostic decision support system: a breast cancer detection case , 2000, Artif. Intell. Medicine.

[13]  Bengt Carlsson,et al.  Benchmark simulation model no. 1 with a wireless sensor network for monitoring and control , 2011 .

[14]  Amit K. Verma,et al.  Epoch determination for neural network by self-organized map (SOM) , 2010 .

[15]  Eric Becker,et al.  A BP-Neural Network Improvement to Hop-Counting for Localization in Wireless Sensor Networks , 2009, Tools and Applications with Artificial Intelligence.

[16]  Eric Séverin,et al.  Self organizing maps in corporate finance: Quantitative and qualitative analysis of debt and leasing , 2010, Neurocomputing.

[17]  Andrzej Cichocki,et al.  Neural networks for optimization and signal processing , 1993 .

[18]  Michael Chester,et al.  Neural networks - a tutorial , 1993 .

[19]  S. L. Pinjare,et al.  Design and Analog VLSI Implementation of Neural Network Architecture for Signal Processing , 2009 .

[20]  Andreas Rauber,et al.  Visualising Class Distribution on Self-organising Maps , 2007, ICANN.

[21]  Mohd. Noor Md. Sap,et al.  Pest Clustering With Self Organizing Map for Rice Productivity , 2010, SOCO 2010.

[22]  R. Der,et al.  A new quantitative measure of topology preservation in Kohonen's feature maps , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[23]  Boleslaw K. Szymanski,et al.  Computing with Time: From Neural Networks to Sensor Networks , 2008, Comput. J..

[24]  Jouko Lampinen,et al.  Clustering properties of hierarchical self-organizing maps , 1992, Journal of Mathematical Imaging and Vision.

[25]  Ching-Hsue Cheng,et al.  Extracting drug utilization knowledge using self-organizing map and rough set theory , 2007, Expert Syst. Appl..

[26]  Jarkko Venna,et al.  Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study , 2001, ICANN.

[27]  Antonio Puliafito,et al.  Artificial Intelligence and Synchronization in Wireless Sensor Networks , 2009, J. Networks.

[28]  Heik Heinrich Hellmich,et al.  Synaptic plasticity in spiking neural networks (SP2INN): a system approach , 2003, IEEE Trans. Neural Networks.

[29]  Shuhei Koyama,et al.  Principal Component Analysis and Self-Organizing Map for Visualizing and Classifying Fire Risks in Forest Regions , 2007 .

[30]  P. Cortez,et al.  A data mining approach to predict forest fires using meteorological data , 2007 .

[31]  S. Singh,et al.  Routing Protocols in Wireless Sensor Networks - A Survey , 2010 .

[32]  Chiara Buratti,et al.  Wireless Sensor Networks , 2008 .

[33]  Helge J. Ritter,et al.  Neural computation and self-organizing maps - an introduction , 1992, Computation and neural systems series.

[34]  Yong Liu,et al.  A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[35]  G. Serpen,et al.  Empirical approximation for Lyapunov functions with artificial neural nets , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[36]  Andreas Rauber,et al.  Advanced visualization of Self-Organizing Maps with vector fields , 2006, Neural Networks.

[37]  Mohamed F. Younis,et al.  A cognitive scheme for gateway protection in wireless sensor network , 2007, Applied Intelligence.

[38]  Erzsébet Merényi,et al.  Exploiting Data Topology in Visualization and Clustering of Self-Organizing Maps , 2009, IEEE Transactions on Neural Networks.

[39]  Fernando Morgado Dias,et al.  Artificial neural networks: a review of commercial hardware , 2004, Eng. Appl. Artif. Intell..

[40]  Ying Zhang,et al.  A Learning-based Adaptive Routing Tree for Wireless Sensor Networks , 2006, J. Commun..

[41]  Davide Brunelli,et al.  Wireless Sensor Networks , 2012, Lecture Notes in Computer Science.

[42]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[43]  Shuzlina Abdul Rahman,et al.  Soil classification: An application of self organising map and k-means , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[44]  Steve Furber,et al.  High-performance computing for systems of spiking neurons , 2006 .

[45]  Lutgarde M. C. Buydens,et al.  Self- and Super-organizing Maps in R: The kohonen Package , 2007 .

[46]  Ivica Kostanic,et al.  Principles of Neurocomputing for Science and Engineering , 2000 .

[47]  Samuel Kaski,et al.  Bankruptcy analysis with self-organizing maps in learning metrics , 2001, IEEE Trans. Neural Networks.

[48]  Spiros Sirmakessis,et al.  Tools and Applications with Artificial Intelligence , 2009, Tools and Applications with Artificial Intelligence.

[49]  L. Barboni,et al.  Assessment of the MAC layer behavior of wireless sensor networks simulators using experimental testbeds , 2007, 2007 2nd International Workshop on Advances in Sensors and Interface.

[50]  Martin T. Hagan,et al.  Neural network design , 1995 .

[51]  Behzad Moshiri,et al.  Anomaly detection using a self-organizing map and particle swarm optimization , 2011, Sci. Iran..

[52]  Devendra K. Chaturvedi,et al.  Soft Computing - Techniques and its Applications in Electrical Engineering , 2008, Studies in Computational Intelligence.

[53]  A QoS network architecture to interconnect large-scale VLSI neural networks , 2009, 2009 International Joint Conference on Neural Networks.

[54]  A. Roli Artificial Neural Networks , 2012, Lecture Notes in Computer Science.

[55]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[56]  Andrea Conti,et al.  An Overview on Wireless Sensor Networks Technology and Evolution , 2009, Sensors.

[57]  Miklas Scholz,et al.  Application of the self-organizing map as a prediction tool for an integrated constructed wetland agroecosystem treating agricultural runoff. , 2009, Bioresource technology.

[58]  Han-Pang Huang,et al.  EMG classification for prehensile postures using cascaded architecture of neural networks with self-organizing maps , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[59]  Xu Wang,et al.  Speech Visualization based on Robust Self-organizing Map (RSOM) for the Hearing Impaired , 2008, BMEI.

[60]  Erkki Oja,et al.  PicSOM: self-organizing maps for content-based image retrieval , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[61]  Carlos León,et al.  Using Artificial Intelligence in Wireless Sensor Routing Protocols , 2006, KES.

[62]  Rudolf Kruse,et al.  Visualization of Agriculture Data Using Self-Organizing Maps , 2008, SGAI Conf..

[63]  Maurizio Valle,et al.  Analog VLSI Implementation of Artificial Neural Networks with Supervised On-Chip Learning , 2002 .

[64]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[65]  E. Pacheco,et al.  Implementation of a spiking neural network , 2006 .

[66]  Donald Fraser,et al.  A Multiple Self-Organizing Map Scheme for Remote Sensing Classification , 2000, Multiple Classifier Systems.

[67]  G. Simon,et al.  Simulation-based optimization of communication protocols for large-scale wireless sensor networks , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[68]  Pekka Orponen,et al.  General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results , 2003, Neural Computation.

[69]  Jaakko Astola,et al.  Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps , 2003, Machine Learning.

[70]  Indranil Saha,et al.  Artiflcial Neural Networks in Hardware: A Survey , 2008 .

[71]  Urska Cvek,et al.  High-Dimensional Visualizations , 2002 .

[72]  Andreas Grübl VLSI implementation of a spiking neural network , 2007 .

[73]  Ying Zhang,et al.  Adaptive tree: a learning-based meta-routing strategy for sensor networks , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[74]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[75]  O. Mangasarian,et al.  Multisurface method of pattern separation for medical diagnosis applied to breast cytology. , 1990, Proceedings of the National Academy of Sciences of the United States of America.