Approximately Coloring Graphs Without Long Induced Paths

It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on t vertices, for fixed t. We propose an algorithm that, given a 3-colorable graph without an induced path on t vertices, computes a coloring with $$\max \left\{ 5,2\left\lceil \frac{t-1}{2}\right\rceil -2\right\} $$max5,2t-12-2 many colors. If the input graph is triangle-free, we only need $$\max \left\{ 4,\left\lceil \frac{t-1}{2}\right\rceil +1\right\} $$max4,t-12+1 many colors. The running time of our algorithm is $$O((3^{t-2}+t^2)m+n)$$O((3t-2+t2)m+n) if the input graph has n vertices and m edges.

[1]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[2]  T. Neumann Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Sandy Irani,et al.  The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[5]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[6]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[7]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[8]  Daniël Paulusma,et al.  Narrowing the Complexity Gap for Colouring (Cs, Pt)-Free Graphs , 2015, Comput. J..

[9]  Eden Chlamtác,et al.  Approximation Algorithms Using Hierarchies of Semidefinite Programming Relaxations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[10]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[11]  Keith Edwards,et al.  The Complexity of Colouring Problems on Dense Graphs , 1986, Theor. Comput. Sci..

[12]  Ken-ichi Kawarabayashi,et al.  Coloring 3-colorable graphs with o(n^{1/5}) colors , 2014, STACS.

[13]  Jian Song,et al.  A Survey on the Computational Complexity of Coloring Graphs with Forbidden Subgraphs , 2014, J. Graph Theory.

[14]  Maria Chudnovsky,et al.  Four-coloring Ps6-free graphs. I. Extending an excellent precoloring , 2018, ArXiv.

[15]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[16]  Maria Chudnovsky,et al.  Four-coloring P6-free graphs , 2019, SODA.

[17]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[18]  Venkatesan Guruswami,et al.  New Hardness Results for Graph and Hypergraph Colorings , 2016, CCC.

[19]  N. S. Barnett,et al.  Private communication , 1969 .

[20]  Maya Jakobine Stein,et al.  Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven Vertices , 2018, Comb..

[21]  Alex D. Scott,et al.  H-colouring Pt-free graphs in subexponential time , 2019, Discret. Appl. Math..

[22]  Maria Chudnovsky,et al.  Four-coloring P6-free graphs. II. Finding an excellent precoloring , 2018, ArXiv.

[23]  Elchanan Mossel,et al.  Conditional hardness for approximate coloring , 2005, STOC '06.

[24]  Shenwei Huang,et al.  Improved complexity results on k-coloring Pt-free graphs , 2013, Eur. J. Comb..