Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here fo

We demonstrate combined acoustic-optical trapping with transparent piezoelectric transducers supporting high-resolution imaging and acoustic force mapping.

[1]  Monika Ritsch-Marte,et al.  Acoustic force spectroscopy , 2014, Nature Methods.

[2]  Thomas Schwarz,et al.  Acoustofluidics 3: Continuum mechanics for ultrasonic particle manipulation. , 2012, Lab on a chip.

[3]  Thomas Schwarz,et al.  Acoustofluidics 6: Experimental characterization of ultrasonic particle manipulation devices. , 2012, Lab on a chip.

[4]  M. Ritsch-Marte,et al.  Combined acoustic and optical trapping , 2011, Biomedical optics express.

[5]  Hjalmar Brismar,et al.  Acoustofluidics 18: Microscopy for acoustofluidic micro-devices. , 2012, Lab on a chip.

[6]  Martyn Hill,et al.  Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation. , 2012, Lab on a chip.

[7]  Thomas Laurell,et al.  Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  E. Peterman,et al.  Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. , 2011, Physical chemistry chemical physics : PCCP.

[9]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[10]  Yongqiang Qiu,et al.  Letters: optically transparent piezoelectric transducer for ultrasonic particle manipulation , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[11]  Mario Montes-Usategui,et al.  Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. , 2012, Optics express.

[12]  Henrik Bruus,et al.  Acoustofluidics 7: The acoustic radiation force on small particles. , 2012, Lab on a chip.

[13]  Thomas Laurell,et al.  Measuring the local pressure amplitude in microchannel acoustophoresis. , 2010, Lab on a chip.

[14]  A Lenshof,et al.  Acoustofluidics 5: Building microfluidic acoustic resonators. , 2012, Lab on a chip.

[15]  Bruce W. Drinkwater,et al.  Measurements of the force fields within an acoustic standing wave using holographic optical tweezers , 2014 .

[16]  Miles Padgett,et al.  Particle tracking stereomicroscopy in optical tweezers: control of trap shape. , 2010, Optics express.

[17]  Seung-Man Yang,et al.  Characterizing and tracking single colloidal particles with video holographic microscopy. , 2007, Optics express.

[18]  Martyn Hill,et al.  Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator. , 2010, Ultrasonics.

[19]  Henrik Bruus,et al.  Acoustofluidics 2: perturbation theory and ultrasound resonance modes. , 2012, Lab on a chip.

[20]  J. Dual,et al.  Measurement of 3D-forces on a Micro Particle in Acoustofluidic Devices Using an Optical Trap , 2015 .

[21]  J. Dual,et al.  Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping. , 2015, Lab on a chip.

[22]  Monika Ritsch-Marte,et al.  Direct measurement of axial optical forces. , 2015, Optics express.

[23]  J.J.F. van 't Oever,et al.  Imaging local acoustic pressure in microchannels. , 2015, Applied optics.