Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations

The solubility parameter (SP) of a solvent is a key property that measures the polarity and quantifies the ‘like-dissolves-like’ principle, which is an important rule in chemistry for screening solvents for separation processes. It is challenging to experimentally obtain solubility parameters of non-volatile solvents like ionic liquids (ILs), deep eutectic solvents (DESs), and polymers. Here, Molecular Dynamics (MD) simulations have been used to compute the Hildebrand and Hansen solubility parameters of DESs, which are green solvents with potential applications in many different fields. The results from MD simulations are compared with limited available experimental data and commonly used SP correlations for non-volatile solvents. Very limited information is available in literature for the vapor phase composition of DESs. Solubility parameters are computed based on the vaporization of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) components of the DESs as well as clusters, consisting of HBD and HBA components. The relatively large SPs computed from MD indicate that the investigated choline chloride-based DESs are polar solvents. The values of SPs are not significantly affected by temperature. A comparison of vaporization enthalpies of HBD, HBA and clusters from the DES mixture suggests that it is more likely for HBD molecules to vaporize from the DES mixture and dominate the vapor phase.

[1]  F. Mjalli,et al.  Prediction of the surface tension of deep eutectic solvents , 2012 .

[2]  C. A. Smolders,et al.  The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities , 1975 .

[3]  Emmanuel Stefanis,et al.  Prediction of Hansen Solubility Parameters with a New Group-Contribution Method , 2008 .

[4]  A. Beerbower Surface free energy: A new relationship to bulk energies , 1971 .

[5]  Jie Wei,et al.  Determination and Prediction for the Polarity of Ionic Liquids , 2017 .

[6]  S. Verevkin,et al.  Thermodynamic properties of glycerol: Experimental and theoretical study , 2015 .

[7]  S. Pandey,et al.  How polar are choline chloride-based deep eutectic solvents? , 2014, Physical chemistry chemical physics : PCCP.

[8]  François Jérôme,et al.  Deep eutectic solvents: syntheses, properties and applications. , 2012, Chemical Society reviews.

[9]  R. F. Fedors,et al.  A method for estimating both the solubility parameters and molar volumes of liquids , 1974 .

[10]  Liqun Zhang,et al.  Molecular Dynamics Simulation Insight Into Two-Component Solubility Parameters of Graphene and Thermodynamic Compatibility of Graphene and Styrene Butadiene Rubber , 2017 .

[11]  Meng-Hui Li,et al.  Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions , 2013 .

[12]  Alfred N. Martin,et al.  The Solubility of Benzoic Acid in Mixed Solvents , 1960 .

[13]  J. Dutta,et al.  Temperature-Dependent Empirical Parameters for Polarity in Choline Chloride Based Deep Eutectic Solvents. , 2017, The journal of physical chemistry. B.

[14]  The calculation of cohesive energy density from the surface tension of liquids , 1972 .

[15]  R. Taft,et al.  The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities , 1976 .

[16]  Saeid Baroutian,et al.  Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques , 2012 .

[17]  C. Reichardt,et al.  Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .

[18]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[19]  Adriaan van den Bruinhorst,et al.  Quantification of the liquid window of deep eutectic solvents. , 2018, Chemical communications.

[20]  G. J. Kabo,et al.  The effect of the failure of isotropy of a gas in an effusion cell on the vapor pressure and enthalpy of sublimation for alkyl derivatives of carbamide , 2003 .

[21]  A. Derecskei-Kovacs,et al.  Molecular modelling simulations to predict density and solubility parameters of ionic liquids , 2008 .

[22]  Jong‐Min Lee,et al.  Determination of solubility parameters of ionic liquids and ionic liquid/solvent mixtures from intrinsic viscosity. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  W. Goddard,et al.  Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors , 2004, J. Comput. Chem..

[24]  T. Vandernoot,et al.  Temperature dependence of viscosity for room temperature ionic liquids , 2004 .

[25]  M. Farid,et al.  Thermogravimetric measurement of deep eutectic solvents vapor pressure , 2016 .

[26]  Paul Painter,et al.  Molecular dynamic simulations and vibrational analysis of an ionic liquid analogue. , 2013, The journal of physical chemistry. B.

[27]  Rui L. Reis,et al.  Natural Deep Eutectic Solvents – Solvents for the 21st Century , 2014 .

[28]  M. J. Moran,et al.  Fundamentals of Engineering Thermodynamics , 2014 .

[29]  P. Kumar,et al.  Thermal and physical properties of (Choline chloride + urea + l-arginine) deep eutectic solvents , 2016 .

[30]  F. Gallucci,et al.  Determination of the Total Vapor Pressure of Hydrophobic Deep Eutectic Solvents: Experiments and Perturbed-Chain Statistical Associating Fluid Theory Modeling , 2019, ACS Sustainable Chemistry & Engineering.

[31]  S. Pandey,et al.  Densities and dynamic viscosities of (choline chloride + glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15) K , 2014 .

[32]  R. Taft,et al.  The solvatochromic comparison method. 2. The .alpha.-scale of solvent hydrogen-bond donor (HBD) acidities , 1976 .

[33]  Sudhir Ravula,et al.  Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis , 2019, ChemEngineering.

[34]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[35]  S. Pandey,et al.  Densities and Viscosities of (Choline Chloride + Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K , 2014 .

[36]  Haifeng Dong,et al.  Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea , 2014 .

[37]  Michael H. Abraham,et al.  Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation , 1983 .

[38]  Mert Atilhan,et al.  Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications , 2015 .

[39]  Ghanshyam L. Vaghjiani,et al.  Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization. , 2009, The journal of physical chemistry. B.

[40]  Sang Hyun Lee,et al.  The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. , 2005, Chemical communications.

[41]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[42]  Mohd Ali Hashim,et al.  Prediction of refractive index and density of deep eutectic solvents using atomic contributions , 2013 .

[43]  J. Gauvrit,et al.  Determination of poly(epsilon-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. , 2010, International journal of pharmaceutics.

[44]  Emma L. Smith,et al.  Deep eutectic solvents (DESs) and their applications. , 2014, Chemical reviews.

[45]  J. Prausnitz,et al.  Solubility Parameters for Nine Ionic Liquids , 2012 .

[46]  S. Leone,et al.  Photoelectron spectrum of isolated ion-pairs in ionic liquid vapor. , 2007, The journal of physical chemistry. A.

[47]  Jasmine Gupta,et al.  Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. , 2011, The journal of physical chemistry. B.

[48]  Surya Moganty,et al.  Regular Solution Theory for Low Pressure Carbon Dioxide Solubility in Room Temperature Ionic Liquids: Ionic Liquid Solubility Parameter from Activation Energy of Viscosity , 2010 .

[49]  S. Rutan,et al.  Principles and Applications of Solvatochromism , 2001 .

[50]  S. Bhatnagar,et al.  Cohesive-energy-densities of high polymers. Part. III. Estimation of C. E. D. by viscosity measurements , 1963 .

[51]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[52]  S. Pandey,et al.  Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water. , 2014, The journal of physical chemistry. B.

[53]  Erwin Buncel,et al.  Solvatochromism and solvent polarity scales , 1990 .

[54]  A. Tamir Prediction of latent heat of vaporization of multicomponent mixtures , 1982 .

[55]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[56]  Xiaoyan Ji,et al.  Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents. , 2017, ChemSusChem.

[57]  K. R. Seddon,et al.  The nature of ionic liquids in the gas phase. , 2007, The journal of physical chemistry. A.

[58]  H. Eyring,et al.  Theory of the Viscosity of Liquids as a Function of Temperature and Pressure , 1937 .

[59]  L. Gladden,et al.  Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[60]  M. C. Kroon,et al.  Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. , 2013, Angewandte Chemie.

[61]  Jong‐Min Lee,et al.  Hildebrand Solubility Parameters of Amidium Ionic Liquids , 2015 .

[62]  A. Abbott,et al.  Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride , 2006 .

[63]  Ali Reza Harifi-Mood,et al.  Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide , 2017 .

[64]  I. Montes,et al.  Like Dissolves Like: A Guided Inquiry Experiment for Organic Chemistry , 2003 .

[65]  E. Maginn,et al.  Thermal and Transport Properties of Six Ionic Liquids: An Experimental and Molecular Dynamics Study , 2012 .

[66]  C. Hussey,et al.  Aluminum Bromide‐1‐Methyl‐3‐Ethylimidazolium Bromide Ionic Liquids I . Densities, Viscosities, Electrical Conductivities, and Phase Transitions , 1986 .

[67]  Michael L. Michelsen,et al.  A Flory–Huggins model based on the Hansen solubility parameters , 2002 .

[68]  A. Marciniak The Hildebrand Solubility Parameters of Ionic Liquids—Part 2 , 2011, International journal of molecular sciences.

[69]  Meng-Hui Li,et al.  High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T =(298.15 to 323.15)K and up to 50MPa , 2012 .

[70]  S. Pandey,et al.  Densities of aqueous mixtures of (choline chloride+ethylene glycol) and (choline chloride+malonic acid) deep eutectic solvents in temperature range 283.15–363.15K , 2015 .

[71]  Hui Jin,et al.  Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. , 2008, The journal of physical chemistry. B.

[72]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[73]  F. Gallucci,et al.  A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components , 2019 .

[74]  A. Abbott,et al.  Design of improved deep eutectic solvents using hole theory. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[75]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension , 2008 .

[76]  M. Chang,et al.  Hildebrand solubility parameters of ionic liquids: Effects of ionic liquid type, temperature and DMA fraction in ionic liquid , 2012 .

[77]  Xiaoyan Ji,et al.  Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity , 2017 .

[78]  H. Briesen,et al.  Deep eutectic solvent formation: a structural view using molecular dynamics simulations with classical force fields , 2017 .

[79]  Robert G. Jones,et al.  Pyrrolidinium-based ionic liquids. 1-Butyl-1-methyl pyrrolidinium dicyanoamide: thermochemical measurement, mass spectrometry, and ab initio calculations. , 2008, The journal of physical chemistry. B.

[80]  D. Ambrose,et al.  Thermodynamic properties of organic oxygen compounds L. The vapour pressures of 1,2-ethanediol (ethylene glycol) and bis(2-hydroxyethyl) ether (diethylene glycol) , 1981 .

[81]  G. J. Kabo,et al.  Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide , 2005 .

[82]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity , 2008 .

[83]  Orlando Acevedo,et al.  OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. , 2018, The journal of physical chemistry. B.

[84]  K. Dimroth,et al.  Über Pyridinium‐N‐phenol‐betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln , 1963 .

[85]  F. Gallucci,et al.  Thermophysical Properties and Solubility of Different Sugar-Derived Molecules in Deep Eutectic Solvents , 2017 .

[86]  Maaike C. Kroon,et al.  Carbon Dioxide Solubilities in Decanoic Acid-Based Hydrophobic Deep Eutectic Solvents , 2018, Journal of chemical and engineering data.

[87]  Supreet Kaur,et al.  Nanoscale Spatial Heterogeneity in Deep Eutectic Solvents. , 2016, The journal of physical chemistry. B.

[88]  M. Hashim,et al.  Glycerol-based deep eutectic solvents: Physical properties , 2013 .

[89]  P. Redelius Bitumen Solubility Model Using Hansen Solubility Parameter , 2004 .

[90]  K. Lovelock Quantifying intermolecular interactions of ionic liquids using cohesive energy densities , 2017, Royal Society Open Science.

[91]  T. Welton,et al.  A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. , 2017, Physical chemistry chemical physics : PCCP.

[92]  David Shan-Hill Wong,et al.  Densities of a deep eutectic solvent based on choline chloride and glycerol and its aqueous mixtures at elevated pressures , 2012 .

[93]  A. Wagner,et al.  Application of the TraPPE Force Field for Predicting the Hildebrand Solubility Parameters of Organic Solvents and Monomer Units. , 2008, Journal of chemical theory and computation.

[94]  Gary A. Baker,et al.  Computational perspectives on structure, dynamics, gas sorption, and bio-interactions in deep eutectic solvents , 2017 .

[95]  Raymond K. Rasheed,et al.  Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. , 2004, Journal of the American Chemical Society.

[96]  J. Coutinho,et al.  Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. , 2017, Fluid phase equilibria.

[97]  E. Maginn,et al.  A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. , 2011, The Journal of chemical physics.

[98]  Andrzej Marciniak,et al.  The Solubility Parameters of Ionic Liquids , 2010, International journal of molecular sciences.

[99]  B. Veljkovic,et al.  The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents , 2017 .

[100]  David L Davies,et al.  Novel solvent properties of choline chloride/urea mixtures. , 2003, Chemical communications.

[101]  Kaveh Shahbaz,et al.  Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues , 2014 .

[102]  M. Watanabe,et al.  Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids. , 2012, Physical chemistry chemical physics : PCCP.

[103]  Catarina Florindo,et al.  Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids , 2014 .

[104]  Peter Licence,et al.  Vapourisation of ionic liquids. , 2007, Physical chemistry chemical physics : PCCP.