Relations between Perron—Frobenius results for matrix pencils
暂无分享,去创建一个
Volker Mehrmann | D. D. Olesky | P. van den Driessche | V. Mehrmann | D. Olesky | P. D. Driessche | T. Phan | T.X.T. Phan | Dale D. Olesky | P. Driessche
[1] J. J. McDonald,et al. Inverses of Unipathic M-Matrices , 1996, SIAM J. Matrix Anal. Appl..
[2] D. D. Olesky,et al. Perron-frobenius theory for a generalized eigenproblem , 1995 .
[3] Charles R. Johnson,et al. A combinatorial converse to the Perron-Frobenius theorem , 1990 .
[4] John S. Maybee,et al. Matrices, digraphs, and determinants , 1989 .
[5] J. Maybee. Some possible new directions for combinatorial matrix analysis , 1988 .
[6] Charles R. Johnson,et al. Matrix analysis , 1985 .
[7] Ludwig Elsner,et al. On convexity properties of the spectral radius of nonnegative matrices , 1984 .
[8] Charles R. Johnson,et al. A Class of M-Matrices with Tree Graphs , 1983 .
[9] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[10] 藤本 喬雄. A Generalization of the Frobenius Theorem (菅原〔修〕教授退官記念号) , 1977 .
[11] T. Fujimoto,et al. The Frobenius theorem, its Solow-Samuelson extension and the Kuhn-Tucker theorem , 1974 .
[12] Olvi L. Mangasarian,et al. Perron-Frobenius properties of Ax − λBx , 1971 .
[13] Charles R. Johnson,et al. On the effect of the perturbation of a nonnegative matrix on its Perron eigenvector , 1982 .
[14] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .