Mechanism of degradation induced embrittlement in polyethylene

Abstract The thermal oxidation of polyethylene films in air at 80 °C and 90 °C has been studied by tensile testing, IR spectrophotometry and molar mass determination from rheometric measurements. In the conditions under study, the polymer predominantly undergoes chain scission and embrittles suddenly when the weight average molar mass reaches a critical value (90 kg mol −1 ), far before significant damage of the entanglement network ( M e  = 1.9 kg mol −1 ) in the amorphous phase. The following embrittlement mechanism is proposed: chain scission in the amorphous phase induces chemicrystallization. The thickness of the interlamellar amorphous layer ( l a ) decreases until a critical value of the order of 6–7 nm, below which plasticity cannot be activated and the polymer behaves in a brittle manner, as previously shown for virgin polyethylene. Using ( l a , M W ) maps, it is possible to explain the differences observed in the embrittlement behaviour of semi-crystalline polymers predominantly undergoing chain scission.

[1]  V. Balsamo,et al.  Shear and elongational behavior of linear low-density and low-density polyethylene blends from capillary rheometry , 1994 .

[2]  W. B. Black,et al.  High‐strength polyethylene , 1979 .

[3]  Z. Fodor,et al.  The thermo-oxidative degradation of polyolefines—Part 10. Correlation between the formation of carboxyl groups and scission in the oxidation of polyethylene in the melt phase , 1980 .

[4]  I. Ward,et al.  The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene , 1983 .

[5]  R. A. Pereira,et al.  Thermal behavior of gamma-irradiated recycled polyethylene blends , 2000 .

[6]  A. Bellare,et al.  A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene. , 2004, Biomaterials.

[7]  L. Audouin,et al.  Radiation induced embrittlement of PTFE , 2003 .

[8]  D. Mead Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions , 1994 .

[9]  A. Cunha,et al.  Structure Development During Polymer Processing , 2000 .

[10]  V. Djoković,et al.  Recrystallization processes induced by accelerated ageing in isotactic polypropylene of different morphologies , 2000 .

[11]  G. Michler,et al.  Mechanical Properties of Polymers based on Nanostructure and Morphology , 2005 .

[12]  Garth L. Wilkes,et al.  The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes , 2000 .

[13]  P. Spitéri,et al.  Hydrolytic aging of polycarbonate. I: Physical aspects , 1995 .

[14]  R. Markham,et al.  Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions , 1983 .

[15]  Souheng Wu Chain structure and entanglement , 1989 .

[16]  C. Jewett,et al.  The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. , 1998, Biomaterials.

[17]  J. Verdu,et al.  EWF method to study long term fracture properties of cross-linked polyethylene , 2005 .

[18]  A. Siegmann,et al.  Structure-property relationships in blends of linear low- and conventional low-density polyethylene as blown films , 1987 .

[19]  S. Hamid Handbook of Polymer Degradation , 2000 .

[20]  V. Djoković,et al.  Thermal and mechanical properties of cross-linked and uncross- linked linear low-density polyethylene-wax blends , 2003 .

[21]  J. Suarez,et al.  Brittle–ductile transition of gamma-irradiated recycled polyethylenes blend , 2000 .

[22]  Wei Wang,et al.  Surface nature of UV deterioration in properties of solid poly(ethylene terephthalate) , 1998 .

[23]  A. Peacock,et al.  Tensile Properties of Crystalline Polymers: Linear Polyethylene , 1994 .

[24]  U. Gedde,et al.  Degradation of unstabilized medium-density polyethylene pipes in hot-water applications , 1994 .

[25]  J. Verdu,et al.  Effect of photochemical ageing on the tensile properties and behaviour law of unstabilized films of low-density polyethylene , 1994 .

[26]  L. Audouin,et al.  Oxidation induced embrittlement in polypropylene — a tensile testing study , 2000 .

[27]  A. Penlidis,et al.  HDPE/LLDPE reactor blends with bimodal microstructures—Part II: rheological properties , 2002 .

[28]  R. Seguela Critical review of the molecular topology of semicrystalline polymers: The origin and assessment of intercrystalline tie molecules and chain entanglements , 2005 .

[29]  F. E. Karasz,et al.  Characterization of mixtures of linear polyethylenes of ultrahigh and moderate molecular weights , 1986 .

[30]  F. Thominette,et al.  Hydrolytic ageing of polyamide 11. 1. Hydrolysis kinetics in water , 2002 .

[31]  E. Sherman Plastic deformation and tearing in high density polyethylene blown films , 1984 .

[32]  T. Tinçer,et al.  Melt blending of ultra high molecular weight and high density polyethylene: The effect of mixing rate on thermal, mechanical, and morphological properties , 1993 .

[33]  A. Todd The mechanisms of radiation‐induced changes in vinyl polymers , 1960 .

[34]  L. Audouin,et al.  A critical molar mass separating the ductile and brittle regimes as revealed by thermal oxidation in polypropylene , 2004 .

[35]  C. Yue,et al.  Changes in yield in polypropylene of different morphology caused by physical ageing , 1990 .

[36]  P. Klemchuk,et al.  Perspectives on the stabilization of hydrocarbon polymers against thermo-oxidative degradation , 1984 .

[37]  A. Ruina,et al.  Continuum and Discrete Modeling of Craze Failure at a Crack Tip in a Glassy Polymer , 1995 .

[38]  G. N. Mathur,et al.  Thermo-oxidative degradation of isotactic polypropylene film: Structural changes and its correlation with properties , 1982 .

[39]  Parimal M. Vadhar,et al.  Effects of mixing on morphology, rheology, and mechanical properties of blends of ultra‐high molecular weight polyethylene with linear low‐density polyethylene , 1987 .

[40]  M. Watts,et al.  Solid state extrusion of ultra high molecular weight polyethylene. Processing and properties , 1980 .

[41]  M. Lamborn,et al.  Tensile properties of linear low density polyethylene (LLDPE) blown films , 2000 .

[42]  L. Quinzani,et al.  Tensile mechanical behavior of linear high‐density polyethylenes modified with organic peroxide , 2003 .

[43]  L. C. Mendes,et al.  Mechanical, thermal and microstructure evaluation of HDPE after weathering in Rio de Janeiro City , 2003 .

[44]  E. H. Andrews,et al.  Thermal, mechanical, and rheological behavior of blends of ultrahigh and normal‐molecular‐weight linear polyethylenes , 1983 .