Grid-based computer animation rendering

Rendering computer animation frames is a very time consuming job. Using parallel computing on clusters and so-called render farms is a common solution to this problem. In this paper we describe how Grid computing can be used for computer animation rendering. We propose a framework for Grid rendering services, describe its implementation, and present the results and statistics. A loseless 3D compression algorithm was also devised to solve the existing problem of transferring gigabytes of scene representation files (Renderman (.rib) and mental images (.mi)). This compression algorithm has been filed for patent in Singapore.

[1]  David Salomon,et al.  Data compression - The Complete Reference, 4th Edition , 2004 .

[2]  Xiangxu Meng,et al.  The Design of Adaptive Platform for Visual-Intensive Applications over the Grid , 2003, GCC.

[3]  Ian T. Foster,et al.  The Globus project: a status report , 1998, Proceedings Seventh Heterogeneous Computing Workshop (HCW'98).

[4]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[5]  William M. Hartmann,et al.  Psychoacoustics: Facts and Models , 2001 .

[6]  Peter A. Dinda,et al.  Preliminary Report on the Design of a Framework for Distributed Visualization , 1999, PDPTA.

[7]  Yoshio Suzuki,et al.  Visualization Systems on the Information-Technology-Based Laboratory , 2003, IEEE Computer Graphics and Applications.

[8]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[9]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[10]  Simon P. Nee Important issues concerning interactive user interfaces in grid based computational steering systems , 2004 .

[11]  G.G. Langdon,et al.  Data compression , 1988, IEEE Potentials.

[12]  En-Hui Yang,et al.  Simple universal lossy data compression schemes derived from the Lempel-Ziv algorithm , 1996, IEEE Trans. Inf. Theory.

[13]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[14]  Ken Brodlie,et al.  Visualization in grid computing environments , 2004, IEEE Visualization 2004.

[15]  Kwan-Liu Ma,et al.  A PC cluster system for simultaneous interactive volumetric modeling and visualization , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[16]  Nasser M. Nasrabadi,et al.  Image coding using vector quantization: a review , 1988, IEEE Trans. Commun..

[17]  Thomas W. Crockett,et al.  An Introduction to Parallel Rendering , 1997, Parallel Comput..

[18]  Hugo Fastl,et al.  Psychoacoustics: Facts and Models , 1990 .

[19]  Inmaculada García,et al.  The Potential Of Grid Computing In Three-Dimensional Electron Microscopy , 2004, Parallel Process. Lett..

[20]  Robert E. Tarjan,et al.  A Locally Adaptive Data , 1986 .

[21]  David Przybyla,et al.  A holistic approach to high-performance computing: xgrid experience , 2004, SIGUCCS '04.

[22]  Dieter Kranzlmüller,et al.  Interactive Virtual Reality on the Grid , 2004, Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications.