HCI meets Material Science: A Literature Review of Morphing Materials for the Design of Shape-Changing Interfaces

With the proliferation of flexible displays and the advances in smart materials, it is now possible to create interactive devices that are not only flexible but can reconfigure into any shape on demand. Several Human Computer Interaction (HCI) and robotics researchers have started designing, prototyping and evaluating shape-changing devices, realising, however, that this vision still requires many engineering challenges to be addressed. On the material science front, we need breakthroughs in stable and accessible materials to create novel, proof-of-concept devices. On the interactive devices side, we require a deeper appreciation for the material properties and an understanding of how exploiting material properties can provide affordances that unleash the human interactive potential. While these challenges are interesting for the respective research fields, we believe that the true power of shape-changing devices can be magnified by bringing together these communities. In this paper we therefore present a review of advances made in shape-changing materials and discuss their applications within an HCI context.

[1]  Jürgen Steimle,et al.  Foldio: Digital Fabrication of Interactive and Shape-Changing Objects With Foldable Printed Electronics , 2015, UIST.

[2]  Hiroshi Ishii,et al.  Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices , 2012, UIST.

[3]  Ravin Balakrishnan,et al.  Sphere: multi-touch interactions on a spherical display , 2008, UIST '08.

[4]  Stefano Vidoli,et al.  Multiparameter actuation for shape control of bistable composite plates , 2010 .

[5]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[6]  M. Leipold,et al.  European Sail Tower SPS concept , 2001 .

[7]  Hao Zhang,et al.  Foldabilizing furniture , 2015, ACM Trans. Graph..

[8]  Akira Nakayasu,et al.  Luminescent Tentacles: A Scalable SMA Motion Display , 2016, UIST.

[9]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[10]  Samir Allaoui,et al.  Effects of the environmental conditions on the mechanical behaviour of the corrugated cardboard , 2009 .

[11]  Andrew Alderson,et al.  Auxetic Materials for Sports Applications , 2014 .

[12]  Richard L. Baron,et al.  Twenty-meter space telescope based on diffractive Fresnel lens , 2004, SPIE Optics + Photonics.

[13]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[14]  Takuya Nojima,et al.  An assembly of soft actuators for an organic user interface , 2013, UIST '13 Adjunct.

[15]  M. Mativenga,et al.  Fully transparent and rollable electronics. , 2015, ACS applied materials & interfaces.

[16]  Yuefeng Cui,et al.  Highly multistable composite surfaces , 2015 .

[17]  Andres F. Arrieta,et al.  Variable stiffness material and structural concepts for morphing applications , 2013 .

[18]  Takuya Nojima,et al.  Hairlytop interface: An interactive surface display comprised of hair-like soft actuators , 2013, 2013 World Haptics Conference (WHC).

[19]  R. A. Shenoi,et al.  Evaluation of the transverse shear stiffness of a steel bi-directional corrugated-strip-core sandwich beam , 2011 .

[20]  Sriram Subramanian,et al.  TableHop: An Actuated Fabric Display Using Transparent Electrodes , 2016, CHI.

[21]  G. Whitesides,et al.  Foldable Printed Circuit Boards on Paper Substrates , 2010 .

[22]  Andrew Simpson,et al.  Morphing of Inflatable Wings , 2005 .

[23]  Michael R Wisnom,et al.  48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference , 2007 .

[24]  Paul M. Weaver,et al.  Multi-stable composite twisting structure for morphing applications , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Philippa Mothersill,et al.  Awakened apparel: embedded soft actuators for expressive fashion and functional garments , 2014, TEI '14.

[26]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[27]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[28]  Kenneth E. Evans,et al.  The Design, Matching and Manufacture of Auxetic Carbon Fibre Laminates , 2004 .

[29]  Tomohiro Yokozeki,et al.  Development of Variable Camber Morphing Airfoil Using Corrugated Structure , 2014 .

[30]  Fabrizio Scarpa,et al.  Hexachiral truss-core with twisted hemp yarns: Out-of-plane shear properties , 2012 .

[31]  Kenneth E. Evans,et al.  The effect of the processing parameters on the fabrication of auxetic polyethylene , 1995, Journal of Materials Science.

[32]  Ratan Jha,et al.  47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , 2006 .

[33]  Wei Huang,et al.  Novel Applications and Future of Shape-Memory Polymers , 2010 .

[34]  Joseph N. Grima,et al.  Do Zeolites Have Negative Poisson's Ratios? , 2000 .

[35]  Andreas Lendlein,et al.  Shape-Memory Polymers as Drug Carriers—A Multifunctional System , 2010, Pharmaceutical Research.

[36]  A. Ares Shape-Memory Materials , 2018 .

[37]  Keith A. Seffen,et al.  Multistable corrugated shells , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Wei Lin,et al.  Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics , 2011, Advanced materials.

[39]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[40]  Jamie Zigelbaum,et al.  Shape-changing interfaces , 2011, Personal and Ubiquitous Computing.

[41]  Pedro M. Reis,et al.  A Perspective on the Revival of Structural (In) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia , 2015 .

[42]  Paul M. Weaver,et al.  Review of morphing concepts and materials for wind turbine blade applications , 2013 .

[43]  Henry Lin,et al.  Tessella: interactive origami light , 2012, Tangible and Embedded Interaction.

[44]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[45]  Andrew Alderson,et al.  Auxetic polypropylene films , 2005 .

[46]  J. Lewis,et al.  Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications , 2009, Proceedings of the National Academy of Sciences.

[47]  Kyu-Jin Cho,et al.  The Deformable Wheel Robot Using Magic-Ball Origami Structure , 2013 .

[48]  Tomohiro Yokozeki,et al.  Mechanical properties of corrugated composites for candidate materials of flexible wing structures , 2006 .

[49]  Costa Cassapakis,et al.  Inflatable structures technology development overview , 1995 .

[50]  Motoyuki Iijima,et al.  Free-standing, roll-able, and transparent silicone polymer film prepared by using nanoparticles as cross-linking agents , 2013 .

[51]  Samuel Ibekwe,et al.  A review of stimuli-responsive polymers for smart textile applications , 2012 .

[52]  K. Evans,et al.  Microscopic examination of the microstructure and deformation of conventional and auxetic foams , 1997 .

[53]  John Lewis Material challenge for flexible organic devices , 2006 .

[54]  Paul M. Weaver,et al.  Tristability of an orthotropic doubly curved shell , 2013 .

[55]  Alex Olwal,et al.  FlexTiles: A Flexible, Stretchable, Formable, Pressure-Sensitive, Tactile Input Sensor , 2016, CHI Extended Abstracts.

[56]  Hiroshi Ishii,et al.  aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design , 2016, UIST.

[57]  S. Belkoff,et al.  An Ex Vivo Biomechanical Evaluation of an Inflatable Bone Tamp Used in the Treatment of Compression Fracture , 2001, Spine.

[58]  Youngwoo Park,et al.  The Trial of Bendi in a Coffeehouse: Use of a Shape-Changing Device for a Tactile-Visual Phone Conversation , 2015, CHI.

[59]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[60]  Massimo Ruzzene,et al.  Modeling and testing of shape memory alloy chiral honeycomb structures , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[61]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[62]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[63]  H Ashton,et al.  Effect of inflatable plastic splints on blood flow. , 1966, British medical journal.

[64]  Kenneth E. Evans,et al.  Auxetic foams: Modelling negative Poisson's ratios , 1994 .

[65]  Martin L. Dunn,et al.  Active origami by 4D printing , 2014 .

[66]  Richard J. Spontak,et al.  Thermoplastic elastomers: fundamentals and applications , 2000 .

[67]  K. Suganuma,et al.  Foldable nanopaper antennas for origami electronics. , 2013, Nanoscale.

[68]  W. Bonfield,et al.  Anisotropy of the Young's modulus of bone , 1977, Nature.

[69]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[70]  L Mahadevan,et al.  Self-Organized Origami , 2005, Science.

[71]  Hiroshi Ishii,et al.  Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects , 2017, CHI.

[72]  R. Langer,et al.  Polymeric triple-shape materials , 2006, Proceedings of the National Academy of Sciences.

[73]  Christopher R. Bowen,et al.  Technical Notes Shape Memory Alloy-Piezoelectric Active Structures for Reversible Actuation of Bistable Composites , 2010 .

[74]  Wojciech Matusik,et al.  Boxelization: folding 3D objects into boxes , 2014, ACM Trans. Graph..

[75]  Kenneth E. Evans,et al.  Fabrication methods for auxetic foams , 1997 .

[76]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[77]  Jürgen Steimle,et al.  When mobile phones expand into handheld tabletops , 2012, CHI Extended Abstracts.

[78]  Xueyi Fu,et al.  Integrated Multidisciplinary Design and Construction of the Beijing National Aquatic Centre, China , 2011 .

[79]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[80]  Kouta Minamizawa,et al.  Submerged haptics: a 3-DOF fingertip haptic display using miniature 3D printed airbags , 2017, SIGGRAPH Emerging Technologies.

[81]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[82]  Dan Zenkert,et al.  Corrugated all-composite sandwich structures. Part 2: Failure mechanisms and experimental programme , 2009 .

[83]  Mostafa Abdalla,et al.  Optimization of a variable-stiffness skin for morphing high-lift devices , 2010 .

[84]  Elena Villa,et al.  The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators , 2010 .

[85]  R. Malekzadeh,et al.  Pneumatic balloon dilatation in achalasia: a prospective comparison of safety and efficacy with different balloon diameters , 2004, Alimentary pharmacology & therapeutics.

[86]  Pedro Lopes,et al.  Metamaterial Mechanisms , 2016, UIST.

[87]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .

[88]  Ronald S. Fearing,et al.  Fast scale prototyping for folded millirobots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[89]  A. Alderson,et al.  Auxetic materials , 2007 .

[90]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[91]  Kentaro Go,et al.  Origami tessellation display: interaction techniques using origami-based deformable surfaces , 2014, CHI Extended Abstracts.

[92]  Jinsong Leng,et al.  A Kirigami shape memory polymer honeycomb concept for deployment , 2017 .

[93]  Paul M. Weaver,et al.  A concept for the generation of out-of-plane distortion from tailored FRP laminates , 2004 .

[94]  R. P. Johnson,et al.  CORRUGATED WEBS IN PLATE GIRDERS FOR BRIDGES. , 1997 .

[95]  Pattie Maes,et al.  Sprout I/O: a texturally rich interface , 2008, TEI.

[96]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[97]  C. Ha,et al.  Polymers for flexible displays: From material selection to device applications , 2008 .

[98]  Michael Sinapius,et al.  Deployable Composite Booms for Various Gossamer Space Structures , 2011 .

[99]  Jae-Young Choi,et al.  Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes , 2010, Advanced materials.

[100]  Helen Koo,et al.  Enfold: clothing for people with cerebral palsy , 2015, UbiComp/ISWC Adjunct.

[101]  Roel Vertegaal,et al.  Towards more paper-like input: flexible input devices for foldable interaction styles , 2008, UIST '08.

[102]  Gunnar Tibert,et al.  Deployable Tensegrity Structures for Space Applications , 2002 .

[103]  S. Priya,et al.  Tailoring the Response Time of Shape Memory Alloy Wires through Active Cooling and Pre-stress , 2010 .

[104]  Paul M. Weaver,et al.  Bio-inspired structural bistability employing elastomeric origami for morphing applications , 2014 .

[105]  Stephen Daynes,et al.  Morphing structures using soft polymers for active deployment , 2013 .

[106]  Robert Kovacs,et al.  Digital Mechanical Metamaterials , 2017, CHI.

[107]  Masahiko Inami,et al.  Move-it: interactive sticky notes actuated by shape memory alloys , 2011, CHI Extended Abstracts.

[108]  H. Fang,et al.  Deployment of inflatable space structures - A review of recent developments , 2000 .

[109]  David Dureisseix,et al.  An Overview of Mechanisms and Patterns with Origami , 2012 .

[110]  Paul M. Weaver,et al.  Phenomena in the bifurcation of unsymmetric composite plates , 2007 .

[111]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[112]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[113]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[114]  Shin-Tson Wu,et al.  Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture , 2006 .

[115]  Marcelo A Dias,et al.  Kirigami actuators. , 2017, Soft matter.

[116]  Roel Vertegaal,et al.  Organic user interfaces: designing computers in any way, shape, or form , 2007, CACM.

[117]  Anne Roudaut,et al.  Frozen Suit: Designing a Changeable Stiffness Suit and its Application to Haptic Games , 2017, CHI.

[118]  Zhong‐Ming Li,et al.  Review on auxetic materials , 2004 .

[119]  Hiroshi Ishii,et al.  Surflex: a programmable surface for the design of tangible interfaces , 2008, CHI Extended Abstracts.

[120]  T. L. Smith,et al.  Strength of Elastomers. A Perspective , 1978 .

[121]  Phil Mellor,et al.  Bistable Composite Flap for an Airfoil , 2010 .

[122]  Roy Featherstone,et al.  Improving the Speed of Shape Memory Alloy Actuators by Faster Electrical Heating , 2004, ISER.

[123]  Massimo Ruzzene,et al.  Auxetic compliant flexible PU foams: static and dynamic properties , 2005 .

[124]  Wei Min Huang,et al.  Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer , 2006 .

[125]  Leonid Ionov,et al.  Hydrogel-based actuators: possibilities and limitations , 2014 .

[126]  F. Axtell. Kramer The activation energy of a slap bracelet , 1993 .

[127]  Zhi J. Wang,et al.  Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers , 2007 .

[128]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .

[129]  Jozsef Bodig,et al.  Orthotropic Elastic Properties of Wood , 1970 .

[130]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[131]  Wu Yaqun,et al.  Development issues and proposed therapeutic seat framework , 2009 .

[132]  J. R. Raney,et al.  Multistable Architected Materials for Trapping Elastic Strain Energy , 2015, Advanced materials.

[133]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[134]  Keith A. Seffen,et al.  Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization , 2014 .

[135]  C. R. Bowena,et al.  Active composites based on bistable laminates , 2014 .

[136]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[137]  Scott E. Hudson,et al.  Stretching the Bounds of 3D Printing with Embedded Textiles , 2017, CHI.

[138]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[139]  Pierre Zahlen,et al.  Sandwich Structures Technology in Commercial Aviation , 2005 .

[140]  R. W. Tock,et al.  Airbag fabric material modeling of nylon and polyester fabrics using a very simple neural network architecture , 1996 .

[141]  Stefanie Mueller,et al.  3D printing for human-computer interaction , 2017, Interactions.

[142]  Gerhard Tröster,et al.  A ball-grid-array-like electronics-to-textile pocket connector for wearable electronics , 2015, SEMWEB.

[143]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[144]  F. Scarpa,et al.  Auxetic materials for bioprostheses [In the Spotlight] , 2008, IEEE Signal Processing Magazine.

[145]  David W. Jensen,et al.  The Response of Fiber-Reinforced Elastomers under Simple Tension , 2001 .

[146]  Jinhao Qiu,et al.  High-speed actuation of shape memory alloy , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[147]  Yang-Tse Cheng,et al.  Self-healable graphene polymer composites , 2010 .

[148]  Tek-Jin Nam,et al.  Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback , 2008, CHI.

[149]  Damiano Pasini,et al.  Snapping mechanical metamaterials under tension. , 2015, Advanced materials.

[150]  Masahito Ohno Structural Design of the Japan Pavilion in Shanghai Expo , 2010 .

[151]  Hidetaka Tanaka,et al.  Treatment of orthostatic intolerance with inflatable abdominal band , 1997, The Lancet.

[152]  Angelos Chronis,et al.  Choreographic architecture: inscribing instructions in an auxetic based material system , 2013, ANSS 2013.

[153]  Philip A. Wilson,et al.  Hydroelastic inflatable boats: relevant literature and new design considerations , 2012 .

[154]  M. S. Grahne,et al.  Development and evaluation of the mars pathfinder inflatable airbag landing system , 2002 .

[155]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[156]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[157]  Seng C. Tan,et al.  Advanced Self-Deployable Structures for Space Applications , 2007 .

[158]  Byeong-Soo Bae,et al.  Rollable Transparent Glass‐Fabric Reinforced Composite Substrate for Flexible Devices , 2010, Advances in Materials.

[159]  Alicia M. Ortega,et al.  Strong, Tailored, Biocompatible Shape‐Memory Polymer Networks , 2008, Advanced functional materials.

[160]  Michael I. Friswell,et al.  The mechanics of composite corrugated structures: A review with applications in morphing aircraft , 2015 .

[161]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[162]  Marco Evangelos Biancolini,et al.  Evaluation of equivalent stiffness properties of corrugated board , 2005 .

[163]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[164]  Gopal S. Upadhyaya,et al.  Material Science and Engineering , 2007 .

[165]  Michael Rohs,et al.  Squeezeback: Pneumatic Compression for Notifications , 2017, CHI.

[166]  Chris Harrison,et al.  3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities , 2015, CHI.

[167]  Fabrizio Scarpa,et al.  Numerical and experimental uniaxial loading on in-plane auxetic honeycombs , 2000 .

[168]  F. Scarpa,et al.  Auxetic Materials for Bioprostheses , 2008 .

[169]  Daniela Rus,et al.  Pouch Motors: Printable/inflatable soft actuators for robotics , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[170]  Paul M. Weaver,et al.  Design and testing of a deformable wind turbine blade control surface , 2012 .

[171]  Chris Harrison,et al.  Providing dynamically changeable physical buttons on a visual display , 2009, CHI.

[172]  Hiroshi Ishii,et al.  jamSheets: thin interfaces with tunable stiffness enabled by layer jamming , 2014, TEI '14.

[173]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[174]  F. C. Smith,et al.  Mechanical and electromagnetic behaviour of auxetic honeycomb structures , 2003, The Aeronautical Journal (1968).

[175]  T. Xie,et al.  Recent advances in polymer shape memory , 2011 .

[176]  Roberto Naboni,et al.  Metamaterial computation and fabrication of auxetic patterns for architecture , 2015 .

[177]  Hiroshi Ishii,et al.  PneUI: pneumatically actuated soft composite materials for shape changing interfaces , 2013, UIST.

[178]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[179]  Michael W. Hyer,et al.  SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates , 2003 .

[180]  Jongmin Shim,et al.  Buckling-induced encapsulation of structured elastic shells under pressure , 2012, Proceedings of the National Academy of Sciences.

[181]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[182]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[183]  Toshiyo Tamura,et al.  A Wearable Airbag to Prevent Fall Injuries , 2009, IEEE Transactions on Information Technology in Biomedicine.

[184]  Sébastien Gauthier Perron,et al.  Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings , 2013 .

[185]  Tomohiro Tachi,et al.  Rigid-Foldable Thick Origami , 2010 .

[186]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[187]  Roel Vertegaal,et al.  The Design of Organic User Interfaces: Shape, Sketching and Hypercontext , 2013, Interact. Comput..

[188]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[189]  Paul M. Weaver,et al.  Solutions for morphing airfoil sections using bi-stable laminated composite structures , 2007 .

[190]  Pratik Chaturvedi,et al.  Optical Metamaterials: Design, Characterization and Applications , 2009 .

[191]  M. J. Cowling,et al.  Adhesively bonded steel corrugated core sandwich construction for marine applications , 1998 .

[192]  Yong Zhu,et al.  Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications , 2012 .

[193]  Mario J. Enriquez,et al.  A pneumatic tactile alerting system for the driving environment , 2001, PUI '01.

[194]  K. Bertoldi,et al.  A Bioinspired Soft Actuated Material , 2014, Advanced materials.

[195]  C. Majidi Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[196]  Jifei Ou,et al.  Material transformation designing shape changing interfaces enabled by programmable material anisotropy , 2014 .

[197]  Akiya Kamimura,et al.  MimicTile: a variable stiffness deformable user interface for mobile devices , 2012, CHI.

[198]  Jian S. Dai,et al.  A packaging robot for complex cartons , 2006, Ind. Robot.

[199]  Keenan Crane,et al.  Beyond developable , 2016, ACM Trans. Graph..

[200]  Jung Kim,et al.  Durable and Repairable Soft Tactile Skin for Physical Human Robot Interaction , 2017, HRI.

[201]  Kenneth E. Evans,et al.  The effects of powder morphology on the processing of auxetic polypropylene (PP of negative Poisson's ratio) , 1996 .

[202]  Christopher R. Bowen,et al.  Morphing and Shape Control using Unsymmetrical Composites , 2007 .

[203]  Max Mühlhäuser,et al.  Xpaaand: interaction techniques for rollable displays , 2011, CHI.

[204]  L I Kuzmak,et al.  Surgery for morbid obesity. Using an inflatable gastric band. , 1990, AORN journal.

[205]  Hao Li,et al.  Numerical and experimental study on morphing bi-stable composite laminates actuated by a heating method , 2012 .

[206]  Wei Min Huang,et al.  Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review , 2010 .

[207]  Stefano Vidoli,et al.  Tristability of thin orthotropic shells with uniform initial curvature , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[208]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[209]  Kevin D Potter,et al.  Composite corrugated structures for morphing wing skin applications , 2010 .

[210]  Koryo Miura,et al.  Method of Packaging and Deployment of Large Membranes in Space , 1985 .

[211]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[212]  Roel Vertegaal,et al.  PaperFold: Evaluating Shape Changes for Viewport Transformations in Foldable Thin-Film Display Devices , 2015, Tangible and Embedded Interaction.

[213]  M. M. Mikulas,et al.  Inflatable Deployable Space Structures Technology Summary , 1998 .

[214]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[215]  Zhigang Suo,et al.  Flaw sensitivity of highly stretchable materials , 2017 .

[216]  Paul M. Weaver,et al.  Analysis of thermally induced multistable composites , 2008 .

[217]  Marco Evangelos Biancolini,et al.  Numerical and experimental investigation of the strength of corrugated board packages , 2003 .

[218]  Keith A. Seffen,et al.  Morphing of curved corrugated shells , 2009 .

[219]  Jamey Jacob,et al.  Recent Development and Test of Inflatable Wings , 2006 .

[220]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[221]  Ding Xu,et al.  PneuHaptic: delivering haptic cues with a pneumatic armband , 2015, SEMWEB.

[222]  Raf Theunissen,et al.  Adaptive compliant structures for flow regulation , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[223]  Wendy E. Mackay,et al.  Stretchis: Fabricating Highly Stretchable User Interfaces , 2016, UIST.

[224]  Ben Stokes,et al.  Inflashoe: A Shape Changing Shoe to Control Underfoot Pressure , 2017, CHI Extended Abstracts.

[225]  Umar Ansari,et al.  Review of Mechanics and Applications of Auxetic Structures , 2014 .

[226]  Stephen E. Scarborough,et al.  Rigidizable Materials for use in Gossamer Space Inflatable Structures , 2001 .

[227]  I. Gavrilovich,et al.  Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper , 2015, IEEE/ASME Transactions on Mechatronics.

[228]  Scott E. Hudson,et al.  Foldable interactive displays , 2008, UIST '08.

[229]  Jürgen Steimle,et al.  FoldMe: interacting with double-sided foldable displays , 2012, Tangible and Embedded Interaction.

[230]  Koichi Suzumori,et al.  Batch fabrication of fiber-reinforced elastomer prepreg , 1998 .

[231]  B. Stojadinovic,et al.  China INNOVATIVE CORRUGATED STEEL SHEAR WALLS FOR MULTI-STORY RESIDENTIAL BUILDINGS , 2008 .

[232]  Dong-Yol Yang,et al.  Quasi-isotropic bending responses of metallic sandwich plates with bi-directionally corrugated cores , 2010 .

[233]  Robert J. Wood,et al.  Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics , 2014 .

[234]  Sergio Pellegrino,et al.  Origami Sunshield Concepts for Space Telescopes , 2013 .

[235]  A. A. Zadpoor,et al.  Auxetic mechanical metamaterials , 2017 .

[236]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[237]  Anton Nijholt,et al.  Smart Material Interfaces: A Vision , 2011, INTETAIN.

[238]  Marc Behl,et al.  Triple-shape polymers , 2010 .

[239]  Hong Hu,et al.  A novel 3D composite structure with tunable Poisson's ratio and stiffness , 2015 .

[240]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[241]  Brian Sanders,et al.  Mechanical properties of shape memory polymers for morphing aircraft applications , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[242]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[243]  Roel Vertegaal,et al.  MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications , 2013, CHI.

[244]  Zhong You,et al.  A solution for folding rigid tall shopping bags , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[245]  Ningqun Guo,et al.  A note on size effect in actuating NiTi shape memory alloys by electrical current , 2008 .

[246]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[247]  David Graziosi,et al.  Inflatable and Rigidizable Wing Components for Unmanned Aerial Vehicles , 2003 .

[248]  Li Yang,et al.  Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing , 2015 .

[249]  Mohd Ruzaimi Mat Rejab,et al.  The Mechanical Behaviour of Corrugated-Core Sandwich Panels , 2013 .

[250]  Majken Kirkegaard Rasmussen,et al.  Shape-changing interfaces: a review of the design space and open research questions , 2012, CHI.

[251]  H. Ledbetter,et al.  Monocrystal elastic constants of orthotropic Y1Ba2Cu3O7: An estimate , 1991 .

[252]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[253]  Eva Hornecker,et al.  Pneumatibles: Exploring Soft Robotic Actuators for the Design of User Interfaces with Pneumotactile Feedback , 2016, TEI.

[254]  Paul M. Weaver,et al.  Multistable composite plates with piecewise variation of lay-up in the planform , 2009 .

[255]  Samudrala Nagaraju Novel user interaction styles with flexible/rollable screens , 2013, CHItaly '13.

[256]  Ernie Havens,et al.  Morphing Wing Structures for Loitering Air Vehicles , 2004 .

[257]  W. Matusik,et al.  3D-Printed Self-Folding Electronics. , 2017, ACS applied materials & interfaces.

[258]  F. Scarpa,et al.  Shape morphing Kirigami mechanical metamaterials , 2016, Scientific Reports.

[259]  Alastair Johnson,et al.  Sandwich structures with textile-reinforced composite foldcores under impact loads , 2010 .

[260]  Tong Lu,et al.  iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing , 2015, CHI.

[261]  O Ok Park,et al.  Foldable Graphene Electronic Circuits Based on Paper Substrates , 2013, Advanced materials.

[262]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[263]  Ingrid A. Rousseau,et al.  Facile tailoring of thermal transition temperatures of epoxy shape memory polymers , 2009 .

[264]  Roel Vertegaal,et al.  An inflatable hemispherical multi-touch display , 2010, TEI.