Asymptotic behavior of unstable INAR(p) processes

In this paper the asymptotic behavior of an unstable integer-valued autoregressive model of order p (INAR(p)) is described. Under a natural assumption it is proved that the sequence of appropriately scaled random step functions formed from an unstable INAR(p) process converges weakly towards a squared Bessel process. We note that this limit behavior is quite different from that of familiar unstable autoregressive processes of order p. An application for Boston armed robberies data set is presented.

[1]  G. Pap,et al.  Asymptotic Behaviour of Estimators of the Parameters of Nearly Unstable INAR(1) Models , 2003 .

[2]  Geneviève Gauthier,et al.  Convergence forte des estimateurs des paramètres d'un processus GENAR(p) , 1994 .

[3]  Thomas M. O'Donovan,et al.  Short term forecasting: An introduction to the Box-Jenkins approach , 1983 .

[4]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[5]  Stuart Jay Deutsch,et al.  The Effect of Massachusetts' Gun Control Law On Gun-Related Crimes in the City of Boston , 1977 .

[6]  M. Kachour,et al.  First‐order rounded integer‐valued autoregressive (RINAR(1)) process , 2009 .

[7]  U. Böckenholt Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data , 1998 .

[8]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[9]  A note on weak convergence of random step processes , 2007, math/0701803.

[10]  Jürgen Franke,et al.  Multivariate First-Order Integer-Valued Autoregressions , 1993 .

[11]  Gerd Ronning,et al.  Estimation in conditional first order autoregression with discrete support , 2005 .

[12]  P. Phillips,et al.  A Primer on Unit Root Testing , 1998 .

[13]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[14]  J. Franke,et al.  Conditional maximum likelihood estimates for INAR(1) processes and their application to modelling epileptic seizure counts , 1993 .

[15]  P Bélisle,et al.  Change-point analysis of neuron spike train data. , 1998, Biometrics.

[16]  U. Böckenholt An INAR(1) negative multinomial regression model for longitudinal count data , 1999 .

[17]  Isabel Silva,et al.  Asymptotic distribution of the Yule–Walker estimator for INAR(p) processes , 2006 .

[18]  A. M. M. Shahiduzzaman Quoreshi,et al.  Bivariate Time Series Modeling of Financial Count Data , 2006 .

[19]  P. Jeganathan On the Asymptotic Behavior of Least-Squares Estimators in AR Time Series with Roots Near the Unit Circle , 1991, Econometric Theory.

[20]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[21]  B. McCabe,et al.  Asymptotic properties of CLS estimators in the Poisson AR(1) model , 2005 .

[22]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[23]  B. Werker,et al.  Local asymptotic normality and efficient estimation for INAR(p) models , 2006 .

[24]  Poisson limit of an inhomogeneous nearly critical INAR(1) model , 2007, math/0703754.

[25]  Maria Eduardo da Silva,et al.  Difference Equations for the Higher‐Order Moments and Cumulants of the INAR(1) Model , 2004 .

[26]  J. T. Wulu,et al.  Regression analysis of count data , 2002 .

[27]  C. Z. Wei,et al.  Some asymptotic results for the branching process with immigration , 1989 .

[28]  C. Z. Wei,et al.  Limiting Distributions of Least Squares Estimates of Unstable Autoregressive Processes , 1988 .

[29]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[30]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[31]  B. Werker,et al.  The asymptotic structure of nearly unstable non-negative integer-valued AR(1) models , 2009, 0906.2080.

[32]  p-order rounded integer-valued autoregressive (RINAR(p)) process , 2009, 0902.1598.

[33]  James Pickands,et al.  Estimation for an M/G/∞ queue with incomplete information , 1997 .

[34]  G. Pap,et al.  ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES , 1999, Econometric Theory.

[35]  Kurt Brännäs,et al.  GENERALIZED INTEGER-VALUED AUTOREGRESSION , 2001 .

[36]  N. Rudholm Entry and the Number of Firms in the Swedish Pharmaceuticals Market , 2001 .

[37]  Richard Hay,et al.  Box-Tiao Time Series Models for Impact Assessment , 1979 .

[38]  Alain Latour,et al.  The Multivariate Ginar(p) Process , 1997, Advances in Applied Probability.

[39]  Peter Thyregod,et al.  Integer Valued Autoregressive Models for Tipping Bucket Rainfall Measurements , 1999 .

[40]  Alain Latour,et al.  Existence and Stochastic Structure of a Non‐negative Integer‐valued Autoregressive Process , 1998 .

[41]  George E. P. Box,et al.  Intervention Analysis with Applications to Economic and Environmental Problems , 1975 .

[42]  Paul I. Nelson,et al.  On Conditional Least Squares Estimation for Stochastic Processes , 1978 .

[43]  I. V. Basawa,et al.  Least-squares estimation for bifurcating autoregressive processes , 2005 .

[44]  Bas J. M. Werker,et al.  Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models , 2007 .

[45]  D. Karlis,et al.  INAR(1) modeling of overdispersed count series with an environmental application , 2008 .

[46]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[47]  Magda Monteiro,et al.  Optimal Alarm Systems for Count Processes , 2008 .

[48]  Unit root testing in integer-valued AR(1) models , 2001 .

[49]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[50]  Gael M. Martin,et al.  Optimal Probabilistic Forecasts for Counts , 2009 .

[51]  Bas J. M. Werker,et al.  Efficient Estimation of Autoregression Parameters and Innovation Distributions for Semiparametric Integer-Valued AR(p) Models , 2007 .

[52]  Christian Gourieroux,et al.  Heterogeneous INAR(1) model with application to car insurance , 2004 .

[53]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[54]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[55]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[56]  M Cardinal,et al.  On the application of integer-valued time series models for the analysis of disease incidence. , 1999, Statistics in medicine.

[57]  Mohamed Alosh,et al.  An integer-valued pth-order autoregressive structure (INAR(p)) process , 1990, Journal of Applied Probability.

[58]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[59]  Robert C. Jung,et al.  Binomial thinning models for integer time series , 2006 .

[60]  Soohan Ahn,et al.  Analysis of the M/D/1-type queue based on an integer-valued first-order autoregressive process , 2000, Oper. Res. Lett..

[61]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[62]  P. Neal,et al.  Efficient order selection algorithms for integer‐valued ARMA processes , 2009 .

[63]  G. Pap,et al.  Asymptotic inference for nearly unstable INAR(1) models , 2003, Journal of Applied Probability.

[64]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[65]  J. Winnicki,et al.  Estimation of the variances in the branching process with immigration , 1991 .