Portfolio Selection Using Tikhonov Filtering to Estimate the Covariance Matrix

Markowitz's portfolio selection problem chooses weights for stocks in a portfolio based on an estimated covariance matrix of stock returns. Our study proposes reducing noise in the estimation by using a Tikhonov filter function. In addition, we prevent rank deficiency of the estimated covariance matrix and propose a method for effectively choosing the Tikhonov parameter, which determines the filtering intensity. We put previous estimators into a common framework and compare their filtering functions for eigenvalues of the correlation matrix. We demonstrate the effectiveness of our estimator using stock return data from 1958 through 2007.

[1]  M. Bartlett TESTS OF SIGNIFICANCE IN FACTOR ANALYSIS , 1950 .

[2]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[3]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[4]  T. Conlon,et al.  Random Matrix Theory and Fund of Funds Portfolio Optimisation , 2007, 1005.5021.

[5]  B. King Market and Industry Factors in Stock Price Behavior , 1966 .

[6]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[7]  L. Guttman Some necessary conditions for common-factor analysis , 1954 .

[8]  Stanisław Drożdż,et al.  The bulk of the stock market correlation matrix is not pure noise , 2006 .

[9]  Charles Trzcinka,et al.  On the Number of Factors in the Arbitrage Pricing Model , 1986 .

[10]  R. Hanson A Numerical Method for Solving Fredholm Integral Equations of the First Kind Using Singular Values , 1971 .

[11]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[12]  S. Ross,et al.  An Empirical Investigation of the Arbitrage Pricing Theory , 1980 .

[13]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[14]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[15]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[16]  Jack L. Treynor Toward a Theory of Market Value of Risky Assets , 2012 .

[17]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[18]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[19]  Per Christian ANALYSIS OF DISCRETE ILL-POSED PROBLEMS BY MEANS OF THE L-CURVE* , 1992 .

[20]  J. Bouchaud,et al.  RANDOM MATRIX THEORY AND FINANCIAL CORRELATIONS , 2000 .

[21]  Dianne P. O'Leary,et al.  Residual periodograms for choosing regularization parameters for ill-posed problems , 2008 .

[22]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[23]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[24]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[25]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[26]  Bert W. Rust,et al.  Parameter Selection for Constrained Solutions to III-Posed Problems , 2000 .

[27]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[28]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[29]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[30]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[31]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[32]  W. Härdle,et al.  Applied Multivariate Statistical Analysis , 2003 .

[33]  W. Velicer Determining the number of components from the matrix of partial correlations , 1976 .

[34]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[35]  V. Plerou,et al.  Scaling of the distribution of price fluctuations of individual companies. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  V. K. Chopra,et al.  Massaging mean-variance inputs: returns from alternative global investment strategies in the 1980s , 1993 .

[37]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[38]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[39]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[40]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[41]  E. Elton,et al.  ESTIMATING THE DEPENDENCE STRUCTURE OF SHARE PRICES —IMPLICATIONS FOR PORTFOLIO SELECTION , 1973 .

[42]  J. Mossin EQUILIBRIUM IN A CAPITAL ASSET MARKET , 1966 .

[43]  L. Jack,et al.  TREYNOR, . Toward a Theory of Market Value of Risky Assets, Unpublished manuscript. , 1962 .

[44]  W. Sharpe A Simplified Model for Portfolio Analysis , 1963 .

[45]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[46]  Christoffer Bengtsson On Portfolio Selection : Improved Covariance Matrix Estimation for Swedish Asset Returns , 2002 .

[47]  V. Plerou,et al.  Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[49]  Gregory Connor,et al.  A Test for the Number of Factors in an Approximate Factor Model , 1993 .

[50]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .