Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces

The mechanical properties of the SiC/Al interface are crucial in estimating the overall strength of this ceramic-metal composite. The present work investigates the interdiffusion at the SiC/Al interface using molecular dynamics simulations. One cubic and one hexagonal SiC with a higher probability of orientations in contact with Al are examined as two samples of metal-matrix nanocomposites with whisker and particulate reinforcements. These reinforcements with the Si- and C-terminated surfaces of the SiC/Al interfaces are also studied. The average main and cross-interdiffusion coefficients are evaluated using a single diffusion couple for each system. The effect of temperature and annealing time are analysed on the self- and interdiffusion coefficients. It is found that the diffusion of Al in SiC is similar in cubic and hexagonal SiC and as expected, the interdiffusion coefficient increases as the temperature and annealing time increase. The model after diffusion can be used to evaluate the overall mechanical properties of the interface region in future studies.

[1]  O. Ojo,et al.  Time variation of concentration-dependent interdiffusion coefficient obtained by numerical simulation analysis , 2021 .

[2]  M. Willinger,et al.  Spatially Resolved Diffusion of Aluminum in 4H-SiC During Postimplantation Annealing , 2020, IEEE Transactions on Electron Devices.

[3]  Jing Zhong,et al.  High-throughput determination of high-quality interdiffusion coefficients in metallic solids: a review , 2020, Journal of Materials Science.

[4]  T. Sadowski,et al.  Dynamic pulse sensitivity of WC/Co composite , 2018, Composite Structures.

[5]  T. Sadowski,et al.  Distributed microcracking process of WC/Co cermet under dynamic impulse compressive loading , 2018, Composite Structures.

[6]  Lijun Zhang,et al.  Application of distribution functions in accurate determination of interdiffusion coefficients , 2018, Scientific Reports.

[7]  G. P. P. Pun,et al.  Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation , 2015 .

[8]  J. Bhattacharyya,et al.  Effect of hot rolling temperature and thermal cycling on creep and damage behavior of powder metallurgy processed Al–SiC particulate composite , 2012 .

[9]  Yung C. Shin,et al.  Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics , 2011 .

[10]  S. Prabu,et al.  Influence of interface compounds on interface bonding characteristics of aluminium and silicon carbide , 2009 .

[11]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[12]  B. Ünlü,et al.  Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method , 2008 .

[13]  N. Chen,et al.  An inverse adhesion problem for extracting interfacial pair potentials for the Al(0 0 1)/3C–SiC(0 0 1) interface , 2008 .

[14]  Rajiv K. Kalia,et al.  Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide , 2007 .

[15]  P. Erhart,et al.  Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide , 2005 .

[16]  Jie Zhang,et al.  Side-surface structure of a commercial β-silicon carbide whisker , 2004 .

[17]  Jiří Čermák,et al.  Concentration dependence of ternary interdiffusion coefficients in Ni3Al/Ni3Al–X couples with X=Cr, Fe, Nb and Ti , 2003 .

[18]  T. Sudarshan,et al.  Aluminum and Boron Diffusion into (1-100) Face SiC Substrates , 2002 .

[19]  Manoj Gupta,et al.  Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites , 2001 .

[20]  V. Sokolov,et al.  Transient enhanced diffusion of aluminum in SiC during high temperature ion implantation , 1999 .

[21]  Jae-pyoung Ahn,et al.  Control of the interface in SiC/Al composites , 1999 .

[22]  E. Wang,et al.  Molecular-dynamics simulation of Al/SiC interface structures , 1999 .

[23]  Yongho Sohn,et al.  A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple , 1999 .

[24]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[25]  R. M. Pillai,et al.  Reinforcement coatings and interfaces in aluminium metal matrix composites , 1998 .

[26]  J. Hoekstra,et al.  AB INITIO CALCULATIONS OF THE BETA -SIC(001)/AL INTERFACE , 1998 .

[27]  R. Arsenault,et al.  Anomalous penetration of Al into SiC , 1995 .

[28]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[29]  C. Garcia-cordovilla,et al.  Reactivity of thermally oxidized and unoxidized SiC particulates with aluminium-silicon alloys , 1992 .

[30]  Tersoff Carbon defects and defect reactions in silicon. , 1990, Physical review letters.

[31]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[32]  P. Jena,et al.  Quantum chemical study of adhesion at the SiC/Al interface , 1988 .

[33]  D. Chatain,et al.  Wettability of SiC by aluminium and Al-Si alloys , 1987 .

[34]  M. Dayananda,et al.  Zero-flux planes and flux reversals in the Cu- Ni- Zn System at 775 °C , 1984 .

[35]  Y. Tajima,et al.  Diffusion of ion implanted aluminum in silicon carbide , 1982 .

[36]  C. V. Opdorp Anomalous diffusion of Al into SiC , 1971 .

[37]  James H. Parker,et al.  Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3 C , 4 H , 6 H , 1 5 R , and 2 1 R , 1968 .

[38]  K. Salama,et al.  Elastic Constants of Aluminum , 1964 .

[39]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[40]  Ludwig Boltzmann,et al.  Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten , 1894 .