Unconditional measurement-based quantum computation with optomechanical continuous variables
暂无分享,去创建一个
[1] N. Kiesel,et al. Real-time optimal quantum control of mechanical motion at room temperature , 2020, Nature.
[2] Xueshi Guo,et al. Deterministic multi-mode gates on a scalable photonic quantum computing platform , 2020, Nature Physics.
[3] E. Knill,et al. Direct observation of deterministic macroscopic entanglement , 2020, Science.
[4] N. Kiesel,et al. Cooling of a levitated nanoparticle to the motional quantum ground state , 2019, Science.
[5] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[6] Casper R. Breum,et al. Deterministic generation of a two-dimensional cluster state , 2019, Science.
[7] Yan Yan,et al. Generation of Optical and Mechanical Squeezing in the Linear‐and‐Quadratic Optomechanics , 2019, Annalen der Physik.
[8] R. N. Alexander,et al. Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.
[9] N. Kiesel,et al. Levitated cavity optomechanics in high vacuum , 2019, Quantum Science and Technology.
[10] J. Fink,et al. Stationary entangled radiation from micromechanical motion , 2018, Nature.
[11] V. Negnevitsky,et al. Encoding a qubit in a trapped-ion mechanical oscillator , 2018, Nature.
[12] A. Sørensen,et al. Quantum nondemolition measurement of mechanical motion quanta , 2018, Nature Communications.
[13] A. Clerk,et al. Stabilized entanglement of massive mechanical oscillators , 2017, Nature.
[14] M. Aspelmeyer,et al. Remote quantum entanglement between two micromechanical oscillators , 2017, Nature.
[15] Peter Zoller,et al. Universal photonic quantum computation via time-delayed feedback , 2017, Proceedings of the National Academy of Sciences.
[16] Liang Jiang,et al. A CNOT gate between multiphoton qubits encoded in two cavities , 2017, Nature Communications.
[17] Martin Schwarz,et al. Anticoncentration theorems for schemes showing a quantum speedup , 2017, 1706.03786.
[18] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .
[19] Y. Cai,et al. Multimode entanglement in reconfigurable graph states using optical frequency combs , 2017, Nature Communications.
[20] Ewold Verhagen,et al. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations , 2016, Nature Communications.
[21] M. Ataka,et al. Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity , 2016 .
[22] M. Sillanpaa,et al. Dynamically creating tripartite resonance and dark modes in a multimode optomechanical system , 2016, 1609.08809.
[23] Mazyar Mirrahimi,et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.
[24] Y. Don,et al. Deterministic generation of a cluster state of entangled photons , 2016, Science.
[25] Yu Shiozawa,et al. Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.
[26] Albert Schliesser,et al. Multimode optomechanical system in the quantum regime , 2016, Proceedings of the National Academy of Sciences.
[27] David Grass,et al. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers , 2016, 1603.09393.
[28] J. Prat-Camps,et al. On-chip quantum interference of a superconducting microsphere , 2016, 1603.01553.
[29] Lin Zhang,et al. Photon–phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator , 2016, 1602.02221.
[30] Marco G. Genoni,et al. Conditional and unconditional Gaussian quantum dynamics , 2016, 1607.02619.
[31] A. Clerk,et al. Quantum squeezing of motion in a mechanical resonator , 2015, Science.
[32] M. Hartmann,et al. Entangling the motion of two optically trapped objects via time-modulated driving fields , 2014, 1408.3423.
[33] G. Brawley,et al. Nonlinear optomechanical measurement of mechanical motion , 2014, Nature Communications.
[34] M. S. Tame,et al. Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.
[35] D. Mason,et al. Multimode optomechanical dynamics in a cavity with avoided crossings , 2014, Nature Communications.
[36] C. Fabre,et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.
[37] Shota Yokoyama,et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.
[38] Thomas Coudreau,et al. Compact Gaussian quantum computation by multi-pixel homodyne detection , 2013, 1303.5355.
[39] N. Flowers-Jacobs,et al. Fiber-cavity-based optomechanical device , 2012, 1206.3558.
[40] P. Hakonen,et al. Multimode circuit optomechanics near the quantum limit , 2012, Nature Communications.
[41] G. Di Giuseppe,et al. Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment , 2011, 1112.6002.
[42] Elham Kashefi,et al. Demonstration of Blind Quantum Computing , 2011, Science.
[43] G. Milburn,et al. An introduction to quantum optomechanics , 2011 .
[44] J. Teufel,et al. Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.
[45] Erik Lucero,et al. Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.
[46] J. Sankey,et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.
[47] B. Sanders,et al. Optical quantum memory , 2009, 1002.4659.
[48] H. Briegel,et al. Measurement-based quantum computation , 2009, 0910.1116.
[49] D. E. Chang,et al. Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.
[50] J. B. Hertzberg,et al. Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.
[51] M. Savva,et al. Back-action-evading measurements of nanomechanical motion , 2009, 0906.0967.
[52] A. Clerk,et al. Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.
[53] S. Girvin,et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.
[54] R. Raussendorf,et al. Topological fault-tolerance in cluster state quantum computation , 2007, quant-ph/0703143.
[55] R. Prevedel,et al. High-speed linear optics quantum computing using active feed-forward , 2007, Nature.
[56] Jian-Wei Pan,et al. Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.
[57] Barry C. Sanders,et al. Non-Gaussian ancilla states for continuous variable quantum computation via Gaussian maps , 2006, quant-ph/0606026.
[58] T. Spiller,et al. Quantum computation by communication , 2005, quant-ph/0509202.
[59] A. Zeilinger,et al. Experimental one-way quantum computing , 2005, Nature.
[60] S. Pirandola,et al. Continuous variable encoding by ponderomotive interaction , 2005, quant-ph/0503003.
[61] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[62] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[63] Mention , 1950, Agronomy Journal.
[64] Cheng Jiang,et al. Controllable optical multistability in hybrid optomechanical system assisted by parametric interactions , 2016 .
[65] Jeff T. Hill,et al. Nonlinear Optics and Wavelength Translation Via Cavity-Optomechanics , 2013 .
[66] B. Muzykantskii,et al. ON QUANTUM NOISE , 1995 .
[67] H. Carmichael. An open systems approach to quantum optics , 1993 .
[68] E. B. Wilson,et al. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1916, Science.