Unconditional measurement-based quantum computation with optomechanical continuous variables

Universal quantum computation encoded over continuous variables can be achieved via Gaussian measurements acting on entangled non-Gaussian states. However, due to the weakness of available nonlinearities, generally these states can only be prepared conditionally, potentially with low probability. Here we show how universal quantum computation could be implemented unconditionally using an integrated platform able to sustain both linear and quadratic optomechanical-like interactions. Specifically, considering cavity opto- and electro-mechanical systems, we propose a realisation of a driven-dissipative dynamics that deterministically prepares the required non-Gaussian cluster states --- entangled squeezed states of multiple mechanical oscillators suitably interspersed with cubic-phase states. We next demonstrate how arbitrary Gaussian measurements on the cluster nodes can be performed by continuously monitoring the output cavity field. Finally, the feasibility requirements of this approach are analysed in detail, suggesting that its building blocks are within reach of current technology.

[1]  N. Kiesel,et al.  Real-time optimal quantum control of mechanical motion at room temperature , 2020, Nature.

[2]  Xueshi Guo,et al.  Deterministic multi-mode gates on a scalable photonic quantum computing platform , 2020, Nature Physics.

[3]  E. Knill,et al.  Direct observation of deterministic macroscopic entanglement , 2020, Science.

[4]  N. Kiesel,et al.  Cooling of a levitated nanoparticle to the motional quantum ground state , 2019, Science.

[5]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[6]  Casper R. Breum,et al.  Deterministic generation of a two-dimensional cluster state , 2019, Science.

[7]  Yan Yan,et al.  Generation of Optical and Mechanical Squeezing in the Linear‐and‐Quadratic Optomechanics , 2019, Annalen der Physik.

[8]  R. N. Alexander,et al.  Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.

[9]  N. Kiesel,et al.  Levitated cavity optomechanics in high vacuum , 2019, Quantum Science and Technology.

[10]  J. Fink,et al.  Stationary entangled radiation from micromechanical motion , 2018, Nature.

[11]  V. Negnevitsky,et al.  Encoding a qubit in a trapped-ion mechanical oscillator , 2018, Nature.

[12]  A. Sørensen,et al.  Quantum nondemolition measurement of mechanical motion quanta , 2018, Nature Communications.

[13]  A. Clerk,et al.  Stabilized entanglement of massive mechanical oscillators , 2017, Nature.

[14]  M. Aspelmeyer,et al.  Remote quantum entanglement between two micromechanical oscillators , 2017, Nature.

[15]  Peter Zoller,et al.  Universal photonic quantum computation via time-delayed feedback , 2017, Proceedings of the National Academy of Sciences.

[16]  Liang Jiang,et al.  A CNOT gate between multiphoton qubits encoded in two cavities , 2017, Nature Communications.

[17]  Martin Schwarz,et al.  Anticoncentration theorems for schemes showing a quantum speedup , 2017, 1706.03786.

[18]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[19]  Y. Cai,et al.  Multimode entanglement in reconfigurable graph states using optical frequency combs , 2017, Nature Communications.

[20]  Ewold Verhagen,et al.  Nonlinear cavity optomechanics with nanomechanical thermal fluctuations , 2016, Nature Communications.

[21]  M. Ataka,et al.  Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity , 2016 .

[22]  M. Sillanpaa,et al.  Dynamically creating tripartite resonance and dark modes in a multimode optomechanical system , 2016, 1609.08809.

[23]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[24]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[25]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[26]  Albert Schliesser,et al.  Multimode optomechanical system in the quantum regime , 2016, Proceedings of the National Academy of Sciences.

[27]  David Grass,et al.  Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers , 2016, 1603.09393.

[28]  J. Prat-Camps,et al.  On-chip quantum interference of a superconducting microsphere , 2016, 1603.01553.

[29]  Lin Zhang,et al.  Photon–phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator , 2016, 1602.02221.

[30]  Marco G. Genoni,et al.  Conditional and unconditional Gaussian quantum dynamics , 2016, 1607.02619.

[31]  A. Clerk,et al.  Quantum squeezing of motion in a mechanical resonator , 2015, Science.

[32]  M. Hartmann,et al.  Entangling the motion of two optically trapped objects via time-modulated driving fields , 2014, 1408.3423.

[33]  G. Brawley,et al.  Nonlinear optomechanical measurement of mechanical motion , 2014, Nature Communications.

[34]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[35]  D. Mason,et al.  Multimode optomechanical dynamics in a cavity with avoided crossings , 2014, Nature Communications.

[36]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[37]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[38]  Thomas Coudreau,et al.  Compact Gaussian quantum computation by multi-pixel homodyne detection , 2013, 1303.5355.

[39]  N. Flowers-Jacobs,et al.  Fiber-cavity-based optomechanical device , 2012, 1206.3558.

[40]  P. Hakonen,et al.  Multimode circuit optomechanics near the quantum limit , 2012, Nature Communications.

[41]  G. Di Giuseppe,et al.  Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment , 2011, 1112.6002.

[42]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[43]  G. Milburn,et al.  An introduction to quantum optomechanics , 2011 .

[44]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[45]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[46]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[47]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[48]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[49]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[50]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[51]  M. Savva,et al.  Back-action-evading measurements of nanomechanical motion , 2009, 0906.0967.

[52]  A. Clerk,et al.  Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.

[53]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[54]  R. Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007, quant-ph/0703143.

[55]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[56]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[57]  Barry C. Sanders,et al.  Non-Gaussian ancilla states for continuous variable quantum computation via Gaussian maps , 2006, quant-ph/0606026.

[58]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[59]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[60]  S. Pirandola,et al.  Continuous variable encoding by ponderomotive interaction , 2005, quant-ph/0503003.

[61]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[62]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[63]  Mention , 1950, Agronomy Journal.

[64]  Cheng Jiang,et al.  Controllable optical multistability in hybrid optomechanical system assisted by parametric interactions , 2016 .

[65]  Jeff T. Hill,et al.  Nonlinear Optics and Wavelength Translation Via Cavity-Optomechanics , 2013 .

[66]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[67]  H. Carmichael An open systems approach to quantum optics , 1993 .

[68]  E. B. Wilson,et al.  PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1916, Science.