Central projections of leg sense organs inCarausius morosus (Insecta, Phasmida)

SummaryThe present study describes the central projections of leg proprioceptors important in resistance reflexes and in the control of leg movement in the stick insect. The following proprioceptors were studied: the femoral chordotonal organ and the campaniform sensilla on the proximal femur, the hair plate, the hair field and three groups of campaniform sensilla on the trochanter, and the two hair plates and four hair rows on the coxa. For comparison, single tactile hairs on the sternum, coxa, trochanter, and femur were also investigated. Afferent fibers were backfilled with cobalt and the central projections were studied in wholemounts and in sections. Results are compared with those from other insects and arthropods. Results for all three thoracic ganglia are similar. Projections of all the proprioceptors are confined to the ipsilateral half of the segmental ganglion. They all terminate in four common target areas — two each in the lateral and in the intermediate part of the hemiganglion. The two lateral areas lie rostrally and caudally in dorsal neuropile occupied by motoneuron processes. The two intermediate areas lie rostrally and caudally in midventral neuropile lateral to the ventral intermediate tract (VIT). These intermediate areas include part of the ventral coarse-grained neuropile (vcN). Target areas of different proprioceptors overlap considerably, but the intermediate projections of the campaniform sensilla lie slightly closer together than those of the other organs. In addition to these four areas, the afferent fibers of the femoral chordotonal organ (fCO) project to two medial target areas extending into neuropile medial to the VIT. Afferent fibers from the various sense organs reach these common target areas using different pathways, but these pathways share some common elements. Afferent fibers from one organ can follow several alternative pathways to the common target areas. The intermediate areas are reached by projections which form a rostral and a caudal prong extending medially in midventral neuropile. Fibers enter these rostral and caudal prongs either along the lateral margin of the ganglion (a path referred to as a lateral longitudinal bundle) or by crossing from one to the other through coarse-grained neuropile occupying the central core of each hemiganglion (a path referred to as an intermediate longitudinal bundle). Collaterals entering the dorsolateral target areas rise either directly along the margin of the neuropile or from the intermediate longitudinal bundle. The medial target areas of the fCO projections are reached by a third branch which proceeds from the margin of the ganglion medioventrally between the anterior and posterior prongs and then bifurcates. Fibers from different organs follow different routes to reach common target areas. In addition, fibers from the same organ vary in their distribution among alternative pathways. Projections from tactile hairs on the sternum, coxa, trochanter, and femur are quite different from those of the proprioceptive hairs. They proceed medially along the ventral margin of the ganglion to terminate in a loose plexus within medial parts of the ventral association center.

[1]  J. A. Wilson,et al.  The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy. , 1979, Journal of neurobiology.

[2]  J. Schmitz Control of the leg joints in stick insects: Differences in the reflex properties between the standing and the walking states. , 1985 .

[3]  G. Wendler,et al.  Körperhaltung bei der Stabheuschrecke: Ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung , 1972 .

[4]  Ulrich Bässler Der „Kniesehnenreflex” bei Carausius morosus: Übergangsfunktion und Frequenzgang , 2004, Kybernetik.

[5]  R. Hustert Multisegmental Integration and Divergence of Afferent Information from Single Tactile Hairs in a Cricket , 1985 .

[6]  J. Altman,et al.  The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations , 1977, The Journal of comparative neurology.

[7]  J. Altman FUNCTIONAL ORGANISATION OF INSECT GANGLIA , 1981 .

[8]  J. Dean,et al.  Stick Insect Locomotion on a Walking Wheel: Interleg Coordination of Leg Position , 1983 .

[9]  H. Cruse,et al.  The control system of the femur-tibia joint in the standing leg of a walking stick insect Carausius morosus , 1983 .

[10]  H. Pflüger The large fourth abdominal intersegmental interneuron: A new type of wind‐sensitive ventral cord interneuron in locusts , 1984, The Journal of comparative neurology.

[11]  P Bräunig The peripheral and central nervous organization of the locust coxo-trochanteral joint. , 1982, Journal of neurobiology.

[12]  Laura M. Griffin,et al.  Sensory organs of the thoracic legs of the moth Manduca sexta , 1990, Cell and Tissue Research.

[13]  Ulrich Bässler,et al.  Proprioreceptoren am Subcoxal-und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung , 1965, Kybernetik.

[14]  M. Burrows Inhibitory interactions between spiking and nonspiking local interneurons in the locust , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  J. Tautz,et al.  Air movement sensitive hairs and interneurons inLocusta migratoria , 1982, Journal of comparative physiology.

[16]  H. Rehbein Auditory neurons in the ventral cord of the locust: Morphological and functional properties , 2004, Journal of comparative physiology.

[17]  Gwen A. Jacobs,et al.  A reflex behavior mediated by monosynaptic connections between hair afferents and motoneurons in the larval tobacco hornworm,Manduca sexta , 1987, Journal of Comparative Physiology A.

[18]  D. Graham Pattern and Control of Walking in Insects , 1985 .

[19]  U. Bässler,et al.  Reversal of a reflex to a single motoneuron in the stick insect Çarausius morosus , 1976, Biological Cybernetics.

[20]  Jeffrey Dean,et al.  An Atlas of the Thoracic Ganglia in the Stick Insect, Carausius morosus , 1991 .

[21]  J. P. Coillot,et al.  Localisation et description de récepteurs à l'étirement au niveau de l'articulation tibio-fémorale de la patte sauteuse du criquet, Schistocerca gregaria , 1968 .

[22]  R. Hustert,et al.  Segmental and interganglionic projections from primary fibres of insect mechanoreceptors , 1978, Cell and Tissue Research.

[23]  Spiking local interneurons as primary integrators of mechanosensory information in the locust. , 1983, Journal of neurophysiology.

[24]  G. Laurent,et al.  THE ORGANIZATION AND ROLE DURING LOCOMOTION OF THE PROXIMAL MUSCULATURE OF THE CRICKET FORELEG , 1986 .

[25]  H. Cruse,et al.  The contributions of diverse sense organs to the control of leg movement by a walking insect , 2005, Journal of Comparative Physiology A.

[26]  H. Pflüger,et al.  The femoral chordotonal organ: A bifunctional orthopteran (Locusta migratoria) sense organ? , 1989 .

[27]  Gilles Laurent,et al.  Thoracic intersegmental interneurones in the locust with mechanoreceptive inputs from a leg , 1986, Journal of Comparative Physiology A.

[28]  P. Bräunig,et al.  Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts , 2004, Cell and Tissue Research.

[29]  Heiner Römer,et al.  Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust , 1984, Journal of Comparative Physiology A.

[30]  G. Wendler,et al.  The reflex behaviour and innervation of the tergo-coxal retractor muscles of the stick insectCarausius morosus , 1981, Journal of comparative physiology.

[31]  J. Schmitz The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus , 1986, Biological Cybernetics.

[32]  R. Pipa,et al.  Studies on the hexapod nervous system II. The histology of the thoracic ganglia of the adult cockroach, periplaneta americana (L.) , 1959, The Journal of comparative neurology.

[33]  R. Murphey,et al.  The afferent projection of mesothoracic bristle hairs in the cricket,Acheta domesticus , 1985, Journal of Comparative Physiology A.

[34]  A. Büschges Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects , 1989 .

[35]  R. Ritzmann,et al.  Analysis of proprioceptive inputs to DPG interneurons in the cockroach. , 1988, Journal of neurobiology.

[36]  G. Wendler Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen , 1964, Zeitschrift für vergleichende Physiologie.

[37]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[38]  Central nervous projections of sternal trichoid sensilla in locusts , 1980, Naturwissenschaften.

[39]  E. Seyfarth,et al.  Coxal hair plates in spiders: physiology, fine structure, and specific central projections , 1990, Journal of Comparative Physiology A.

[40]  H. Cruse The control system of the femur tibia joint in the standing and the walking stick insect (Carausius morosus). , 1980 .

[41]  R. Levine,et al.  Neural control of leg movements in a metamorphic insect: Sensory and motor elements of the larval thoracic legs in Manduca sexta , 1988, The Journal of comparative neurology.

[42]  M. Burrows Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. , 1975, The Journal of experimental biology.

[43]  U. Bässler,et al.  Motoneurone im Meso- und Metathorakalganglion der Stabheuschrecke Carausius morosus , 1986 .

[44]  U. Bässler,et al.  Response characteristics of single trochanteral campaniform sensilla in the stick insect, Cuniculina impigra , 1986 .

[45]  K G Pearson,et al.  Connexions between hair-plate afferents and motoneurones in the cockroach leg. , 1976, The Journal of experimental biology.

[46]  Hans-Joachim Pflüger,et al.  The Organization of Mechanosensory Neuropiles in Locust Thoracic Ganglia , 1988 .

[47]  J. Bacon,et al.  Ectopic neurons and the organization of insect sensory systems , 1985, Journal of Comparative Physiology A.

[48]  M. Burrows,et al.  Positive feedback loops from proprioceptors involved in leg movements of the locust , 1988, Journal of Comparative Physiology A.

[49]  Professor Dr. Ulrich Bässler Neural Basis of Elementary Behavior in Stick Insects , 1983, Studies of Brain Function.

[50]  Alcoholic Bouin fixation of insect nervous systems for Bodian silver staining. II. Modified solutions. , 1980, Stain technology.

[51]  R. Hustert,et al.  Motor neuronal receptive fields delimit patterns of motor activity during locomotion of the locust , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Young Structure and function in the nervous systems of invertebrates , 1966 .

[53]  N. M. Tyrer,et al.  A Guide to the Neuroanatomy of Locust Suboesophageal and Thoracic Ganglia , 1982 .

[54]  M. Burrows,et al.  The morphological diversity and receptive fields of spiking local interneurons in the locust metathoracic ganglion , 1984, The Journal of comparative neurology.

[55]  P. Bräunig,et al.  Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts , 1981, Cell and Tissue Research.

[56]  M. Burrows Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  U. Bässler,et al.  Physiology of the Femoral Chordotonal Organ in the Stick Insect, Cuniculina Impigra , 1985 .

[58]  Local circuits underlying excitation and inhibition of intersegmental interneurones in the locust , 1988, Journal of Comparative Physiology A.

[59]  G. E. Gregory Neuroanatomy of the mesothoracic ganglion of the cockroach Periplaneta americana (L.). I. The roots of the peripheral nerves. , 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[60]  G. Laurent,et al.  Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  J. Schmitz Properties of the feedback system controlling the coxa-trochanter joint in the stick insect Carausius morosus , 1986, Biological Cybernetics.

[62]  U. Bässler Sensory control of leg movement in the stick insect Carausius morosus , 1977, Biological Cybernetics.

[63]  J. Schmitz,et al.  Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. , 1991, Journal of neurobiology.

[64]  J. S. Altman,et al.  A silver intensification method for cobalt-filled neurones in wholemount preparations , 1977, Brain Research.

[65]  T. Matheson,et al.  Innervation of the metathoracic femoral chordotonal organ ofLocusta migratoria , 1990, Cell and Tissue Research.

[66]  H. Römer,et al.  Organization of a sensory neuropile in the auditory pathway of two groups of orthoptera , 1988, The Journal of comparative neurology.

[67]  R. K. Murphey,et al.  A second cricket cereal sensory system: bristle hairs and the interneurons they activate , 1985, Journal of Comparative Physiology A.

[68]  R. Kittmann,et al.  GAIN CONTROL IN THE FEMUR-TIBIA FEEDBACK SYSTEM OF THE STICK INSECT , 1991 .

[69]  M. Burrows,et al.  The morphology of two groups of spiking local interneurons in the metathoracic ganglion of the locust , 1984, The Journal of comparative neurology.

[70]  G Laurent,et al.  The morphology of a population of thoracic intersegmental interneurones in the locust , 1987, The Journal of comparative neurology.

[71]  G. Laurent Parallel effects of joint receptors on motor neurones and intersegmental interneurones in the locust , 1987, Journal of Comparative Physiology A.