Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows

This paper reviews recent developments in Arbitrary Lagrangian Eulerian (ALE) methods for modeling high speed compressible multimaterial flows in complex geometry on general polygonal meshes. We only consider the indirect ALE approach which consists of three key stages: a Lagrangian stage, in which the solution and the computational mesh are updated; a rezoning stage, in which the nodes of the computational mesh are moved to improve grid quality; and a remapping stage, in which the Lagrangian solution is transferred to the rezoned mesh.

[1]  W. Bo and M. Shashkov R-Adaptive Reconnection-based Arbitrary Lagrangian Eulerian Method-R-ReALE , 2015 .

[2]  Mikhail Shashkov,et al.  Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity , 2008 .

[3]  William J. Rider,et al.  Simple modifications of monotonicity-preserving limiters , 2001 .

[4]  L. G. Margolin Arbitrary Lagrangian-Eulerian (Ale) Methods a Personal Perspective , 2013 .

[5]  Konstantin Lipnikov,et al.  A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..

[6]  Mikhail J. Shashkov,et al.  A Compatible Lagrangian Hydrodynamics Algorithm for Unstructured Grids , 2003 .

[7]  Richard Liska,et al.  High-order remapping with piece-wise parabolic reconstruction , 2013 .

[8]  William J. Rider,et al.  Stability analysis of a predictor/multi-corrector method for staggered-grid Lagrangian shock hydrodynamics , 2009, J. Comput. Phys..

[9]  D. Gaitonde,et al.  Behavior of linear reconstruction techniques on unstructured meshes , 1995 .

[10]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[11]  Pavel B. Bochev,et al.  Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations , 2014, J. Comput. Phys..

[12]  Nathaniel R. Morgan,et al.  On the question of area weighting in cell-centered hydrodynamics , 2013 .

[13]  Chi-Wang Shu,et al.  A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..

[14]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[15]  Pavel B. Bochev,et al.  Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..

[16]  P. Knupp,et al.  Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .

[17]  Donald E. Burton,et al.  Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .

[18]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[19]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[20]  R. Garimella,et al.  Untangling of 2D meshes in ALE simulations , 2004 .

[21]  Wen Ho Lee Computer Simulation of Shaped Charge Problems , 2006 .

[22]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[23]  Mikhail Shashkov,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .

[24]  Rao V. Garimella,et al.  Reference Jacobian Rezoning Strategy for Arbitrary Lagrangian - Eulerian Methods on Polyhedral Grids , 2004, IMR.

[25]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[26]  Tzanio V. Kolev,et al.  Multi‐material closure model for high‐order finite element Lagrangian hydrodynamics , 2016 .

[27]  Len G. Margolin,et al.  Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .

[28]  Len G. Margolin,et al.  Using a Curvilinear Grid to Construct Symmetry-Preserving Discretizations for Lagrangian Gas Dynamics , 1999 .

[29]  Pierre-Henri Maire,et al.  Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case , 2016, J. Comput. Phys..

[30]  Raphaël Loubère,et al.  A second-order accurate material-order-independent interface reconstruction technique for multi-material flow simulations , 2009, J. Comput. Phys..

[31]  Rémi Abgrall,et al.  A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..

[32]  V. F. Tishkin,et al.  On the representation of difference schemes of mathematical physics in operator form , 1981 .

[33]  Veselin Dobrev,et al.  Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .

[34]  Constant Mazeran Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle , 2007 .

[35]  Stéphane Del Pino,et al.  Metric-based mesh adaptation for 2D Lagrangian compressible flows , 2011, J. Comput. Phys..

[36]  Bruno Després,et al.  A new method to introduce constraints in cell-centered Lagrangian schemes , 2013 .

[37]  Patrick M. Knupp,et al.  Optimization-Based Reference-Matrix Rezone Strategies for Arbitrary Lagrangian-Eulerian Methods on Unstructured Meshes , 2001, IMR.

[38]  Pierre-Henri Maire,et al.  A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations , 2016, J. Comput. Phys..

[39]  Mark L. Wilkins,et al.  Computer Simulation of Dynamic Phenomena , 1999 .

[40]  Mikhail J. Shashkov,et al.  Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods , 2014, J. Comput. Phys..

[41]  Mikhail J. Shashkov,et al.  One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..

[42]  Mikhail Shashkov,et al.  Multi-material interface reconstruction from the moment data , 2006 .

[43]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[44]  Bruno Després,et al.  An Antidissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows , 2010 .

[45]  David P. Starinshak,et al.  A subzone reconstruction algorithm for efficient staggered compatible remapping , 2014, J. Comput. Phys..

[46]  Mikhail Shashkov,et al.  A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation , 2013 .

[47]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[48]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[49]  Markus Berndt,et al.  Using the feasible set method for rezoning in ALE , 2010, ICCS.

[50]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[51]  Silvia Bertoluzza,et al.  A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D , 2016 .

[52]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..

[53]  Jean-Philippe Braeunig Reducing the entropy production in a collocated Lagrange-Remap scheme , 2016, J. Comput. Phys..

[54]  Rémi Abgrall,et al.  A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids , 2013, J. Comput. Phys..

[55]  Mark L. Wilkins,et al.  Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .

[56]  Rémi Abgrall,et al.  A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .

[57]  J. Michael Owen,et al.  Arbitrary Lagrangian Eulerian remap treatments consistent with staggered compatible total energy conserving Lagrangian methods , 2013, J. Comput. Phys..

[58]  Mikhail Shashkov,et al.  The repair paradigm and application to conservation laws , 2004 .

[59]  Rao V. Garimella,et al.  Optimization of Surface Mesh Quality Using Local Parametrization , 2002, IMR.

[60]  P. Knupp,et al.  Triangular and quadrilateral surface mesh quality optimization using local parametrization , 2004 .

[61]  Tzanio V. Kolev,et al.  High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .

[62]  Mikhail J. Shashkov,et al.  Adaptive reconnection-based arbitrary Lagrangian Eulerian method , 2015, J. Comput. Phys..

[63]  Jonas A. Zukas,et al.  Introduction to Hydrocodes , 2004 .

[64]  David Bailey,et al.  Reduced-dissipation remapping of velocity in staggered arbitrary Lagrangian-Eulerian methods , 2010, J. Comput. Appl. Math..

[65]  L. Margolin Introduction to “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds” , 1997 .

[66]  Raphaël Loubère,et al.  High order accurate conservative remapping scheme on polygonal meshes using a posteriori MOOD limiting , 2016 .

[67]  Hyung Taek Ahn,et al.  Multi-material interface reconstruction on generalized polyhedral meshes , 2007, J. Comput. Phys..

[68]  V. M. Goloviznin,et al.  A variational approach to constructing finite-difference mathematical models in hydrodynamics , 1977 .

[69]  Raphaël Loubère,et al.  The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..

[70]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .

[71]  Nathaniel R. Morgan,et al.  An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..

[72]  M. Shashkov,et al.  Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .

[73]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[74]  Mikhail J. Shashkov,et al.  Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..

[75]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[76]  Pierre-Henri Maire,et al.  Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .

[77]  Jérôme Breil,et al.  A swept‐intersection‐based remapping method in a ReALE framework , 2013 .

[78]  R. N. Hill,et al.  Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics , 2014, J. Comput. Phys..

[79]  A. J. Barlow,et al.  A high order cell centred dual grid Lagrangian Godunov scheme , 2013 .

[80]  W. F. Noh,et al.  CEL: A TIME-DEPENDENT, TWO-SPACE-DIMENSIONAL, COUPLED EULERIAN-LAGRANGE CODE , 1963 .

[81]  Rémi Abgrall,et al.  Un schéma centré pour l'hydrodynamique Lagrange bidimensionnelle , 2016 .

[82]  Marianne M. Francois,et al.  An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells , 2016, J. Comput. Phys..

[83]  E. Labourasse,et al.  A frame invariant and maximum principle enforcing second‐order extension for cell‐centered ALE schemes based on local convex hull preservation , 2014 .

[84]  Patrick M. Knupp,et al.  Introducing the target-matrix paradigm for mesh optimization via node-movement , 2012, Engineering with Computers.

[85]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[86]  M. Shashkov,et al.  A discrete operator calculus for finite difference approximations , 2000 .

[87]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[88]  Len G. Margolin,et al.  Remapping, recovery and repair on a staggered grid , 2004 .

[89]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[90]  C. W. Hirt,et al.  YAQUI: an arbitrary Lagrangian--Eulerian computer program for fluid flow at all speeds , 1973 .

[91]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[92]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[93]  Markus Berndt,et al.  Using polynomial filtering for rezoning in ALE , 2011 .

[94]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[95]  Jérôme Breil,et al.  Hybrid remap for multi-material ALE , 2011 .

[96]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[97]  Pavel Váchal,et al.  Synchronized flux corrected remapping for ALE methods , 2011 .

[98]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[99]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[100]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[101]  Mack Kenamond,et al.  Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates , 2014, J. Comput. Phys..

[102]  Pavel Váchal,et al.  Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics , 2013, J. Comput. Phys..

[103]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[104]  Bruno Després Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension , 2010 .

[105]  Benjamin Boutin,et al.  Extension of ALE methodology to unstructured conical meshes , 2011 .

[106]  Guglielmo Scovazzi,et al.  On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics , 2009 .

[107]  C. C. Long,et al.  Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..

[108]  Raphaël Loubère,et al.  Volume consistency in a staggered grid Lagrangian hydrodynamics scheme , 2008, J. Comput. Phys..

[109]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[110]  Marianne M. Francois,et al.  An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells , 2014, J. Comput. Phys..

[111]  Bruno Després,et al.  Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..

[112]  Konstantin Lipnikov,et al.  A mimetic tensor artificial viscosity method for arbitrary polyhedral meshes , 2010, ICCS.

[113]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[114]  Jean-Antoine Désidéri,et al.  Compressible flow solvers using unstructured grids , 1992 .

[115]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[116]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[117]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[118]  Mikhail Shashkov,et al.  A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .

[119]  Pavel B. Bochev,et al.  Constrained interpolation (remap) of divergence-free fields , 2005 .

[120]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[121]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[122]  Donald E. Burton,et al.  A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries , 2013, J. Comput. Phys..

[123]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[124]  Philip L. Roe,et al.  A cell centred Lagrangian Godunov scheme for shock hydrodynamics , 2011 .

[125]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[126]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[127]  S. K. Godunov,et al.  Reminiscences about Difference Schemes , 1999 .

[128]  Rao V. Garimella,et al.  Polygonal surface mesh optimization , 2004, Engineering with Computers.

[129]  Joseph Falcovitz,et al.  Slope limiting for vectors: A novel vector limiting algorithm , 2011 .

[130]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[131]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[132]  Pavel B. Bochev,et al.  Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[133]  M. Shashkov,et al.  An efficient linearity-and-bound-preserving remapping method , 2003 .

[134]  Shudao Zhang,et al.  A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions , 2011, J. Comput. Phys..

[135]  A. Harten,et al.  The artificial compression method for computation of shocks and contact discontinuities: III. Self , 1978 .

[136]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[137]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[138]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[139]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[140]  Bruno Després,et al.  Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .

[141]  Mikhail Shashkov,et al.  An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes , 2007 .

[142]  Nathaniel R. Morgan,et al.  Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR) , 2015, J. Comput. Phys..

[143]  Bruno Després,et al.  Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids , 2015, J. Comput. Phys..

[144]  Pavel Váchal,et al.  Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary Lagrangian-Eulerian methods , 2010, J. Comput. Phys..

[145]  David P. Starinshak,et al.  A multimaterial extension to subzonal reconstruction , 2016, J. Comput. Phys..

[146]  Jérôme Breil,et al.  Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[147]  Joseph Falcovitz,et al.  Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .

[148]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[149]  P Anninos New VOF interface capturing and reconstruction algorithms , 1999 .

[150]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[151]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[152]  A. Burbeau-Augoula,et al.  A Node-Centered Artificial Viscosity Method for Two-Dimensional Lagrangian Hydrodynamics Calculations on a Staggered Grid , 2010 .

[153]  Donald E. Burton,et al.  Compatible, energy and symmetry preserving 2D lagrangian hydrodynamics in rz - cylindrical coordinates , 2010, ICCS.

[154]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[155]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[156]  Raphaël Loubère,et al.  ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .

[157]  Stéphane Del Pino A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates , 2010 .

[158]  Bruno Després,et al.  Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy , 2012, J. Comput. Phys..

[159]  Xianyi Zeng,et al.  A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations , 2014, J. Comput. Phys..

[160]  Tzanio V. Kolev,et al.  High order curvilinear finite elements for elastic-plastic Lagrangian dynamics , 2014, J. Comput. Phys..

[161]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .