Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows
暂无分享,去创建一个
William J. Rider | Pierre-Henri Maire | Mikhail J. Shashkov | Robert N. Rieben | Andrew Barlow | M. Shashkov | W. Rider | R. Rieben | P. Maire | A. Barlow
[1] W. Bo and M. Shashkov. R-Adaptive Reconnection-based Arbitrary Lagrangian Eulerian Method-R-ReALE , 2015 .
[2] Mikhail Shashkov,et al. Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity , 2008 .
[3] William J. Rider,et al. Simple modifications of monotonicity-preserving limiters , 2001 .
[4] L. G. Margolin. Arbitrary Lagrangian-Eulerian (Ale) Methods a Personal Perspective , 2013 .
[5] Konstantin Lipnikov,et al. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..
[6] Mikhail J. Shashkov,et al. A Compatible Lagrangian Hydrodynamics Algorithm for Unstructured Grids , 2003 .
[7] Richard Liska,et al. High-order remapping with piece-wise parabolic reconstruction , 2013 .
[8] William J. Rider,et al. Stability analysis of a predictor/multi-corrector method for staggered-grid Lagrangian shock hydrodynamics , 2009, J. Comput. Phys..
[9] D. Gaitonde,et al. Behavior of linear reconstruction techniques on unstructured meshes , 1995 .
[10] Jérôme Breil,et al. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..
[11] Pavel B. Bochev,et al. Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations , 2014, J. Comput. Phys..
[12] Nathaniel R. Morgan,et al. On the question of area weighting in cell-centered hydrodynamics , 2013 .
[13] Chi-Wang Shu,et al. A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..
[14] Mikhail Shashkov,et al. Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .
[15] Pavel B. Bochev,et al. Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..
[16] P. Knupp,et al. Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .
[17] Donald E. Burton,et al. Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .
[18] Raphaël Loubère,et al. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .
[19] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .
[20] R. Garimella,et al. Untangling of 2D meshes in ALE simulations , 2004 .
[21] Wen Ho Lee. Computer Simulation of Shaped Charge Problems , 2006 .
[22] M. Shashkov. Conservative Finite-Difference Methods on General Grids , 1996 .
[23] Mikhail Shashkov,et al. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .
[24] Rao V. Garimella,et al. Reference Jacobian Rezoning Strategy for Arbitrary Lagrangian - Eulerian Methods on Polyhedral Grids , 2004, IMR.
[25] Nathaniel R. Morgan,et al. A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .
[26] Tzanio V. Kolev,et al. Multi‐material closure model for high‐order finite element Lagrangian hydrodynamics , 2016 .
[27] Len G. Margolin,et al. Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .
[28] Len G. Margolin,et al. Using a Curvilinear Grid to Construct Symmetry-Preserving Discretizations for Lagrangian Gas Dynamics , 1999 .
[29] Pierre-Henri Maire,et al. Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case , 2016, J. Comput. Phys..
[30] Raphaël Loubère,et al. A second-order accurate material-order-independent interface reconstruction technique for multi-material flow simulations , 2009, J. Comput. Phys..
[31] Rémi Abgrall,et al. A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..
[32] V. F. Tishkin,et al. On the representation of difference schemes of mathematical physics in operator form , 1981 .
[33] Veselin Dobrev,et al. Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .
[34] Constant Mazeran. Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle , 2007 .
[35] Stéphane Del Pino,et al. Metric-based mesh adaptation for 2D Lagrangian compressible flows , 2011, J. Comput. Phys..
[36] Bruno Després,et al. A new method to introduce constraints in cell-centered Lagrangian schemes , 2013 .
[37] Patrick M. Knupp,et al. Optimization-Based Reference-Matrix Rezone Strategies for Arbitrary Lagrangian-Eulerian Methods on Unstructured Meshes , 2001, IMR.
[38] Pierre-Henri Maire,et al. A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations , 2016, J. Comput. Phys..
[39] Mark L. Wilkins,et al. Computer Simulation of Dynamic Phenomena , 1999 .
[40] Mikhail J. Shashkov,et al. Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods , 2014, J. Comput. Phys..
[41] Mikhail J. Shashkov,et al. One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..
[42] Mikhail Shashkov,et al. Multi-material interface reconstruction from the moment data , 2006 .
[43] A. M. Winslow. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .
[44] Bruno Després,et al. An Antidissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows , 2010 .
[45] David P. Starinshak,et al. A subzone reconstruction algorithm for efficient staggered compatible remapping , 2014, J. Comput. Phys..
[46] Mikhail Shashkov,et al. A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation , 2013 .
[47] M. Wilkins. Calculation of Elastic-Plastic Flow , 1963 .
[48] C. L. Rousculp,et al. A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .
[49] Markus Berndt,et al. Using the feasible set method for rezoning in ALE , 2010, ICCS.
[50] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[51] Silvia Bertoluzza,et al. A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D , 2016 .
[52] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..
[53] Jean-Philippe Braeunig. Reducing the entropy production in a collocated Lagrange-Remap scheme , 2016, J. Comput. Phys..
[54] Rémi Abgrall,et al. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids , 2013, J. Comput. Phys..
[55] Mark L. Wilkins,et al. Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .
[56] Rémi Abgrall,et al. A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .
[57] J. Michael Owen,et al. Arbitrary Lagrangian Eulerian remap treatments consistent with staggered compatible total energy conserving Lagrangian methods , 2013, J. Comput. Phys..
[58] Mikhail Shashkov,et al. The repair paradigm and application to conservation laws , 2004 .
[59] Rao V. Garimella,et al. Optimization of Surface Mesh Quality Using Local Parametrization , 2002, IMR.
[60] P. Knupp,et al. Triangular and quadrilateral surface mesh quality optimization using local parametrization , 2004 .
[61] Tzanio V. Kolev,et al. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .
[62] Mikhail J. Shashkov,et al. Adaptive reconnection-based arbitrary Lagrangian Eulerian method , 2015, J. Comput. Phys..
[63] Jonas A. Zukas,et al. Introduction to Hydrocodes , 2004 .
[64] David Bailey,et al. Reduced-dissipation remapping of velocity in staggered arbitrary Lagrangian-Eulerian methods , 2010, J. Comput. Appl. Math..
[65] L. Margolin. Introduction to “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds” , 1997 .
[66] Raphaël Loubère,et al. High order accurate conservative remapping scheme on polygonal meshes using a posteriori MOOD limiting , 2016 .
[67] Hyung Taek Ahn,et al. Multi-material interface reconstruction on generalized polyhedral meshes , 2007, J. Comput. Phys..
[68] V. M. Goloviznin,et al. A variational approach to constructing finite-difference mathematical models in hydrodynamics , 1977 .
[69] Raphaël Loubère,et al. The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..
[70] M. Rudman. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .
[71] Nathaniel R. Morgan,et al. An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..
[72] M. Shashkov,et al. Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .
[73] John K. Dukowicz,et al. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .
[74] Mikhail J. Shashkov,et al. Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..
[75] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[76] Pierre-Henri Maire,et al. Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .
[77] Jérôme Breil,et al. A swept‐intersection‐based remapping method in a ReALE framework , 2013 .
[78] R. N. Hill,et al. Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics , 2014, J. Comput. Phys..
[79] A. J. Barlow,et al. A high order cell centred dual grid Lagrangian Godunov scheme , 2013 .
[80] W. F. Noh,et al. CEL: A TIME-DEPENDENT, TWO-SPACE-DIMENSIONAL, COUPLED EULERIAN-LAGRANGE CODE , 1963 .
[81] Rémi Abgrall,et al. Un schéma centré pour l'hydrodynamique Lagrange bidimensionnelle , 2016 .
[82] Marianne M. Francois,et al. An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells , 2016, J. Comput. Phys..
[83] E. Labourasse,et al. A frame invariant and maximum principle enforcing second‐order extension for cell‐centered ALE schemes based on local convex hull preservation , 2014 .
[84] Patrick M. Knupp,et al. Introducing the target-matrix paradigm for mesh optimization via node-movement , 2012, Engineering with Computers.
[85] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[86] M. Shashkov,et al. A discrete operator calculus for finite difference approximations , 2000 .
[87] Bharat K. Soni,et al. Handbook of Grid Generation , 1998 .
[88] Len G. Margolin,et al. Remapping, recovery and repair on a staggered grid , 2004 .
[89] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[90] C. W. Hirt,et al. YAQUI: an arbitrary Lagrangian--Eulerian computer program for fluid flow at all speeds , 1973 .
[91] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[92] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[93] Markus Berndt,et al. Using polynomial filtering for rezoning in ALE , 2011 .
[94] E. Puckett,et al. Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .
[95] Jérôme Breil,et al. Hybrid remap for multi-material ALE , 2011 .
[96] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[97] Pavel Váchal,et al. Synchronized flux corrected remapping for ALE methods , 2011 .
[98] Raphaël Loubère,et al. 3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .
[99] Chi-Wang Shu,et al. High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..
[100] Pierre-Henri Maire,et al. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..
[101] Mack Kenamond,et al. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates , 2014, J. Comput. Phys..
[102] Pavel Váchal,et al. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics , 2013, J. Comput. Phys..
[103] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[104] Bruno Després. Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension , 2010 .
[105] Benjamin Boutin,et al. Extension of ALE methodology to unstructured conical meshes , 2011 .
[106] Guglielmo Scovazzi,et al. On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics , 2009 .
[107] C. C. Long,et al. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..
[108] Raphaël Loubère,et al. Volume consistency in a staggered grid Lagrangian hydrodynamics scheme , 2008, J. Comput. Phys..
[109] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[110] Marianne M. Francois,et al. An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells , 2014, J. Comput. Phys..
[111] Bruno Després,et al. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..
[112] Konstantin Lipnikov,et al. A mimetic tensor artificial viscosity method for arbitrary polyhedral meshes , 2010, ICCS.
[113] Timothy J. Barth,et al. The design and application of upwind schemes on unstructured meshes , 1989 .
[114] Jean-Antoine Désidéri,et al. Compressible flow solvers using unstructured grids , 1992 .
[115] Graham F. Carey,et al. Computational grids : generation, adaptation, and solution strategies , 1997 .
[116] Raphaël Loubère,et al. Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .
[117] Rao V. Garimella,et al. A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .
[118] Mikhail Shashkov,et al. A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .
[119] Pavel B. Bochev,et al. Constrained interpolation (remap) of divergence-free fields , 2005 .
[120] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[121] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[122] Donald E. Burton,et al. A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries , 2013, J. Comput. Phys..
[123] Tamal K. Dey,et al. Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.
[124] Philip L. Roe,et al. A cell centred Lagrangian Godunov scheme for shock hydrodynamics , 2011 .
[125] P. Knupp. Algebraic mesh quality metrics for unstructured initial meshes , 2003 .
[126] John K. Dukowicz,et al. A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .
[127] S. K. Godunov,et al. Reminiscences about Difference Schemes , 1999 .
[128] Rao V. Garimella,et al. Polygonal surface mesh optimization , 2004, Engineering with Computers.
[129] Joseph Falcovitz,et al. Slope limiting for vectors: A novel vector limiting algorithm , 2011 .
[130] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[131] Xiangxiong Zhang,et al. Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[132] Pavel B. Bochev,et al. Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..
[133] M. Shashkov,et al. An efficient linearity-and-bound-preserving remapping method , 2003 .
[134] Shudao Zhang,et al. A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions , 2011, J. Comput. Phys..
[135] A. Harten,et al. The artificial compression method for computation of shocks and contact discontinuities: III. Self , 1978 .
[136] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[137] M. Gurtin,et al. The Mechanics and Thermodynamics of Continua , 2010 .
[138] R. Menikoff,et al. The Riemann problem for fluid flow of real materials , 1989 .
[139] J. Brackbill,et al. Adaptive zoning for singular problems in two dimensions , 1982 .
[140] Bruno Després,et al. Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .
[141] Mikhail Shashkov,et al. An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes , 2007 .
[142] Nathaniel R. Morgan,et al. Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR) , 2015, J. Comput. Phys..
[143] Bruno Després,et al. Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids , 2015, J. Comput. Phys..
[144] Pavel Váchal,et al. Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary Lagrangian-Eulerian methods , 2010, J. Comput. Phys..
[145] David P. Starinshak,et al. A multimaterial extension to subzonal reconstruction , 2016, J. Comput. Phys..
[146] Jérôme Breil,et al. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..
[147] Joseph Falcovitz,et al. Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .
[148] Dimitri J. Mavriplis,et al. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .
[149] P Anninos. New VOF interface capturing and reconstruction algorithms , 1999 .
[150] Chi-Wang Shu,et al. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..
[151] Granino A. Korn,et al. Mathematical handbook for scientists and engineers , 1961 .
[152] A. Burbeau-Augoula,et al. A Node-Centered Artificial Viscosity Method for Two-Dimensional Lagrangian Hydrodynamics Calculations on a Staggered Grid , 2010 .
[153] Donald E. Burton,et al. Compatible, energy and symmetry preserving 2D lagrangian hydrodynamics in rz - cylindrical coordinates , 2010, ICCS.
[154] W. Rider,et al. Reconstructing Volume Tracking , 1998 .
[155] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[156] Raphaël Loubère,et al. ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .
[157] Stéphane Del Pino. A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates , 2010 .
[158] Bruno Després,et al. Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy , 2012, J. Comput. Phys..
[159] Xianyi Zeng,et al. A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations , 2014, J. Comput. Phys..
[160] Tzanio V. Kolev,et al. High order curvilinear finite elements for elastic-plastic Lagrangian dynamics , 2014, J. Comput. Phys..
[161] John K. Dukowicz,et al. Incremental Remapping as a Transport/Advection Algorithm , 2000 .