Optical generation of high frequency ultrasound using two-dimensional gold nanostructure

A two-dimensional (2D) gold nanostructure is used to optically generate high frequency ultrasound. The structure consists of 2D arrangements of gold nanoparticles, sandwiched between a transparent substrate and a 4.5μm thick polydimethylsiloxane (PDMS) layer. The acoustic signal displays significant improvements compared to a bulk black PDMS films (the current state of the art) at frequencies from 50to100MHz. The high optical extinction ratio of the gold nanostructure provides a convenient method to construct an integrated transmit/receive optoacoustic array. These results show that a 2D gold nanostructure can be used to produce high frequency arrays for ultrasound imaging.

[1]  M. O'Donnell,et al.  Thermoelastic expansion vs. piezoelectricity for high-frequency, 2-D arrays , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  C. H. Skeen,et al.  Laser‐induced stress‐wave and impulse augmentation , 1972 .

[3]  L. W. Kessler,et al.  Acoustic Microscope operating at 100 MHz , 1971, Nature.

[4]  Ki-Dong Lee,et al.  Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching , 2005 .

[5]  S.W. Smith,et al.  High-density flexible interconnect for two-dimensional ultrasound arrays , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[7]  G. Wetsel,et al.  Photothermal Generation of Thermoelastic Waves in Composite Media , 1986, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  S. H. Kim,et al.  Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography , 2005 .

[9]  K. Shung,et al.  A 30-MHz piezo-composite ultrasound array for medical imaging applications , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  J. Monchalin Optical detection of ultrasound at a distance using a confocal Fabry–Perot interferometer , 1985 .

[11]  Matthew O'Donnell,et al.  High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film , 2001 .

[12]  F. Aussenegg,et al.  Optical dichroism of lithographically designed silver nanoparticle films. , 1996, Optics letters.

[13]  Matthew O'Donnell,et al.  Optoacoustic imaging using thin polymer étalon , 2005 .

[14]  M. O'Donnell,et al.  A high-frequency, 2-D array element using thermoelastic expansion in PDMS , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Richard M. White,et al.  Generation of Elastic Waves by Transient Surface Heating , 1963 .

[16]  C. Quate,et al.  Acoustic microscope—scanning version , 1974 .