Synthesis and characterization of gadolinium-Peptidomimetic complex as an αvβ3 integrin targeted MR contrast agent.

[1]  Yongmin Chang,et al.  Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. , 2014, Biochemical and biophysical research communications.

[2]  E. A. Waters,et al.  Synthesis and characterization of a porphyrazine-Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model. , 2014, Contrast media & molecular imaging.

[3]  M. Brechbiel,et al.  Synthesis and characterization of αvβ₃-targeting peptidomimetic chelate conjugates for PET and SPECT imaging. , 2012, Bioorganic & medicinal chemistry letters.

[4]  S. Durell,et al.  Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds , 2012, Nature Communications.

[5]  Ambika Bumb,et al.  Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. , 2010, Chemical reviews.

[6]  Jae-Chang Jung,et al.  Gd‐DOTA Conjugate of RGD as a Potential Tumor‐Targeting MRI Contrast Agent , 2008, Chembiochem : a European journal of chemical biology.

[7]  T. Meade,et al.  Synthesis of multimeric MR contrast agents for cellular imaging. , 2008, Journal of the American Chemical Society.

[8]  Peter Caravan,et al.  Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. , 2006, Chemical Society reviews.

[9]  Zhimin Shen,et al.  Synthesis, in vitro, and in vivo characterization of an integrin αvβ3-targeted molecular probe for optical imaging of tumor , 2005 .

[10]  Heather Kalish,et al.  Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. , 2004, Blood.

[11]  Xiaoping Hu,et al.  Advances in high-field magnetic resonance imaging. , 2004, Annual review of biomedical engineering.

[12]  G. Gillespie,et al.  Human Malignant Glioma Therapy Using Anti-αVβ3 Integrin Agents , 2004, Journal of Neuro-Oncology.

[13]  D. Piwnica-Worms,et al.  Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets. , 2003, Molecular imaging.

[14]  Junichi Takagi,et al.  Integrin activation and structural rearrangement , 2002, Immunological reviews.

[15]  M. Bednarski,et al.  Tumor Regression by Targeted Gene Delivery to the Neovasculature , 2002, Science.

[16]  Sibylle Ziegler,et al.  Noninvasive Imaging of αvβ3 Integrin Expression Using 18F-labeled RGD-containing Glycopeptide and Positron Emission Tomography , 2001 .

[17]  M Schwaiger,et al.  Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  Stasia A. Anderson,et al.  Magnetic resonance contrast enhancement of neovasculature with αvβ3‐targeted nanoparticles , 2000 .

[19]  M. Schaar,et al.  Evaluation of a radiolabelled cyclic DTPA‐RGD analogue for tumour imaging and radionuclide therapy , 2000, International journal of cancer.

[20]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[21]  D. Cheresh,et al.  Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. , 1992, The Journal of clinical investigation.

[22]  D. Cheresh,et al.  Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. , 1991, The Journal of clinical investigation.

[23]  D. Elder,et al.  Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. , 1990, Cancer research.