Signatures of a magnetic-field-induced Lifshitz transition in the ultra-quantum limit of the topological semimetal ZrTe5
暂无分享,去创建一个
C. Felser | S. Galeski | S. Zherlitsyn | D. Gorbunov | Q. Li | G. Gu | J. Gooth | M. Uhlarz | T. Meng | P. M. Lozano | J. Wosnitza | T. Förster | H. F. Legg | R. Wawrzy'nczak | D. Gorbunov | H. F. Legg | R. Wawrzyńczak | T. Förster | Q. Li | G. Gu | C. Felser | T. Meng
[1] H. Berger,et al. Magnetic freeze-out and anomalous Hall effect in ZrTe5 , 2022, npj Quantum Materials.
[2] C. Felser,et al. Anisotropic large diamagnetism in Dirac semimetals ZrTe5 and HfTe5 , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.
[3] A. Rosch,et al. Gigantic Magnetochiral Anisotropy in the Topological Semimetal ZrTe_{5}. , 2020, Physical review letters.
[4] A. Tsvelik,et al. Anomalous Hall effect at the Lifshitz transition in ZrTe5 , 2021, 2112.15227.
[5] C. Felser,et al. Origin of the quasi-quantized Hall effect in ZrTe5 , 2020, Nature communications.
[6] X. Dai,et al. First Principle Calculation of the Effective Zeeman’s Couplings in Topological Materials , 2015, Memorial Volume for Shoucheng Zhang.
[7] C. Felser,et al. Unconventional Hall response in the quantum limit of HfTe5 , 2020, Nature Communications.
[8] R. Shindou,et al. Ground-state atlas of a three-dimensional semimetal in the quantum limit , 2019, Physical Review B.
[9] P. Monceau,et al. Survey of the Thermodynamic Properties of the Charge Density Wave Systems , 2019, Advances in Condensed Matter Physics.
[10] E. Bauer,et al. Thermodynamic Signatures of Weyl Fermions in NbP , 2019, Scientific Reports.
[11] Kun Yang,et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5 , 2018, Nature.
[12] Wei Li,et al. Giant Magnetic Quantum Oscillations in the Thermal Conductivity of TaAs: Indications of Chiral Zero Sound , 2018, Physical Review X.
[13] Q. Gibson,et al. Anomalous Hall effect in ZrTe5 , 2018, Nature Physics.
[14] Q. Gibson,et al. Anomalous Hall Effect in ZrTe 5 , 2018 .
[15] G. Seyfarth,et al. Thermodynamic signatures of the field-induced states of graphite , 2017, Nature Communications.
[16] Kamran Behnia,et al. Emptying Dirac valleys in bismuth using high magnetic fields , 2016, Nature Communications.
[17] C. M. Wang,et al. Magnetic-tunnelling-induced Weyl node annihilation in TaP , 2015, Nature Physics.
[18] L. Li,et al. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5 , 2016, Nature Communications.
[19] P. Monceau,et al. Elastic anomalies at the charge density wave transition in TbTe3 , 2016 .
[20] Kun Yang,et al. Transport evidence for the three-dimensional Dirac semimetal phase in ZrT e 5 , 2016, 1603.05351.
[21] G. Gu,et al. Chiral magnetic effect in ZrTe5 , 2014, Nature Physics.
[22] G. Gu,et al. Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). , 2015, Physical review letters.
[23] X. Dai,et al. Transition-Metal Pentatelluride ZrTe 5 and HfTe 5 : A Paradigm for Large-Gap Quantum Spin Hall Insulators , 2013, 1309.7529.
[24] Amit Kumar,et al. High magnetic field induced charge density waves and sign reversal of the Hall coefficient in graphite , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[25] B. Bernevig,et al. Scenario for Fractional Quantum Hall Effect in Bulk Isotropic Materials , 2008, 0810.1757.
[26] R. Follath,et al. Pseudogap-driven sign reversal of the Hall effect. , 2008, Physical review letters.
[27] B. Lüthi,et al. Physical acoustics in the solid state , 2005 .
[28] Thierry Giamarchi,et al. Quantum physics in one dimension , 2004 .
[29] H. Goto,et al. Exchange and correlation effects in the three-dimensional electron gas in strong magnetic fields and application to graphite , 1998 .
[30] Bertrand I. Halperin,et al. Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field , 1987 .
[31] D. Shoenberg,et al. Magnetic Oscillations in Metals , 1984 .
[32] G. V. Chester,et al. Solid State Physics , 2000 .