Signatures of a magnetic-field-induced Lifshitz transition in the ultra-quantum limit of the topological semimetal ZrTe5

[1]  H. Berger,et al.  Magnetic freeze-out and anomalous Hall effect in ZrTe5 , 2022, npj Quantum Materials.

[2]  C. Felser,et al.  Anisotropic large diamagnetism in Dirac semimetals ZrTe5 and HfTe5 , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  A. Rosch,et al.  Gigantic Magnetochiral Anisotropy in the Topological Semimetal ZrTe_{5}. , 2020, Physical review letters.

[4]  A. Tsvelik,et al.  Anomalous Hall effect at the Lifshitz transition in ZrTe5 , 2021, 2112.15227.

[5]  C. Felser,et al.  Origin of the quasi-quantized Hall effect in ZrTe5 , 2020, Nature communications.

[6]  X. Dai,et al.  First Principle Calculation of the Effective Zeeman’s Couplings in Topological Materials , 2015, Memorial Volume for Shoucheng Zhang.

[7]  C. Felser,et al.  Unconventional Hall response in the quantum limit of HfTe5 , 2020, Nature Communications.

[8]  R. Shindou,et al.  Ground-state atlas of a three-dimensional semimetal in the quantum limit , 2019, Physical Review B.

[9]  P. Monceau,et al.  Survey of the Thermodynamic Properties of the Charge Density Wave Systems , 2019, Advances in Condensed Matter Physics.

[10]  E. Bauer,et al.  Thermodynamic Signatures of Weyl Fermions in NbP , 2019, Scientific Reports.

[11]  Kun Yang,et al.  Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5 , 2018, Nature.

[12]  Wei Li,et al.  Giant Magnetic Quantum Oscillations in the Thermal Conductivity of TaAs: Indications of Chiral Zero Sound , 2018, Physical Review X.

[13]  Q. Gibson,et al.  Anomalous Hall effect in ZrTe5 , 2018, Nature Physics.

[14]  Q. Gibson,et al.  Anomalous Hall Effect in ZrTe 5 , 2018 .

[15]  G. Seyfarth,et al.  Thermodynamic signatures of the field-induced states of graphite , 2017, Nature Communications.

[16]  Kamran Behnia,et al.  Emptying Dirac valleys in bismuth using high magnetic fields , 2016, Nature Communications.

[17]  C. M. Wang,et al.  Magnetic-tunnelling-induced Weyl node annihilation in TaP , 2015, Nature Physics.

[18]  L. Li,et al.  Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5 , 2016, Nature Communications.

[19]  P. Monceau,et al.  Elastic anomalies at the charge density wave transition in TbTe3 , 2016 .

[20]  Kun Yang,et al.  Transport evidence for the three-dimensional Dirac semimetal phase in ZrT e 5 , 2016, 1603.05351.

[21]  G. Gu,et al.  Chiral magnetic effect in ZrTe5 , 2014, Nature Physics.

[22]  G. Gu,et al.  Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). , 2015, Physical review letters.

[23]  X. Dai,et al.  Transition-Metal Pentatelluride ZrTe 5 and HfTe 5 : A Paradigm for Large-Gap Quantum Spin Hall Insulators , 2013, 1309.7529.

[24]  Amit Kumar,et al.  High magnetic field induced charge density waves and sign reversal of the Hall coefficient in graphite , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  B. Bernevig,et al.  Scenario for Fractional Quantum Hall Effect in Bulk Isotropic Materials , 2008, 0810.1757.

[26]  R. Follath,et al.  Pseudogap-driven sign reversal of the Hall effect. , 2008, Physical review letters.

[27]  B. Lüthi,et al.  Physical acoustics in the solid state , 2005 .

[28]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[29]  H. Goto,et al.  Exchange and correlation effects in the three-dimensional electron gas in strong magnetic fields and application to graphite , 1998 .

[30]  Bertrand I. Halperin,et al.  Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field , 1987 .

[31]  D. Shoenberg,et al.  Magnetic Oscillations in Metals , 1984 .

[32]  G. V. Chester,et al.  Solid State Physics , 2000 .