The complexity of tensor calculus

AbstractTensor calculus over semirings is shown relevant to complexity theory in unexpected ways. First, evaluating well-formed tensor formulas with explicit tensor entries is shown complete for $\bigoplusP$, for NP, and for #P as the semiring varies. Indeed the permanent of a matrix is shown expressible as the value of a tensor formula in much the same way that Berkowitz’s theorem expresses its determinant. Second, restricted tensor formulas are shown to capture the classes LOGCFL and NL, their parity counterparts $\bigoplusLOGCFL$ and $\bigoplusL$, and several other counting classes. Finally, the known inclusions $\NP/\poly \subseteq \bigoplusP/\poly$, $\LOGCFL/\poly \subseteq \bigoplusLOGCFL/\poly$, and $\NL/\poly \subseteq \bigoplusL/\poly$, which have scattered proofs in the literature (Valiant & Vazirani 1986; Gál & Wigderson 1996), are shown to follow from the new characterizations in a single blow. As an intermediate tool, we define and make use of the natural notion of an algebraic Turing machine over a semiring $ \mathcal{S}$.

[1]  Christos H. Papadimitriou,et al.  Two remarks on the power of counting , 1983, Theoretical Computer Science.

[2]  Willi-Hans Steeb,et al.  Kronecker product of matrices and applications , 1991 .

[3]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[4]  Carsten Damm Depth-Efficient Simulation of Boolean Semi-Unbounded Circuits by Arithmetic Ones , 1999, Inf. Process. Lett..

[5]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[6]  Avi Wigderson NL/poly /spl sube/ /spl oplus/L/poly , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[7]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[8]  V. Strassen The asymptotic spectrum of tensors. , 1988 .

[9]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[10]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[11]  戸田 誠之助,et al.  Computational complexity of counting complexity classes , 1991 .

[12]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[13]  Eric Allender,et al.  Relationships among PL, #L, and the determinant , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[14]  Christoph Meinel,et al.  Polynomial Size Omega-Branching Programs and Their Computational Power , 1990, Inf. Comput..

[15]  Carsten Damm,et al.  Problems Complete for +L , 1990, IMYCS.

[16]  Rolf Niedermeier,et al.  Unambiguous Auxiliary Pushdown Automata and Semi-unbounded Fan-in Circuits , 1995, Inf. Comput..

[17]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[18]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[19]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[20]  Carsten Damm,et al.  Problems Complete for \oplus L , 1990, Inf. Process. Lett..

[21]  A. Stephen,et al.  Gap-De nable Counting Classes , 1991 .

[22]  Avi Wigderson,et al.  Boolean complexity classes vs. their arithmetic analogs , 1996, Random Struct. Algorithms.

[23]  Eric Allender,et al.  Relationships Among PL, #L, and the Determinant , 1996, RAIRO Theor. Informatics Appl..

[24]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[25]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[26]  Anna Gál,et al.  On arithmetic branching programs , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[27]  Meena Mahajan,et al.  Non-Commutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds , 1998, Theor. Comput. Sci..

[28]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[29]  R. M. Mason,et al.  Applied matrix and tensor analysis , 1970 .

[30]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[31]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[32]  Avi Wigderson,et al.  Boolean complexity classes vs. their arithmetic analogs , 1996 .

[33]  V Vinay Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[34]  Christoph Meinel,et al.  Structure and Importance of Logspace-MOD-Classes , 1991, STACS.

[35]  A. Gal Semi-unbounded fan-in circuits: Boolean vs. arithmetic , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[36]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[37]  José L. Balcázar,et al.  Structural complexity 1 , 1988 .

[38]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[39]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[40]  Stuart A. Kurtz,et al.  Gap-Definable Counting Classes , 1994, J. Comput. Syst. Sci..

[41]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[42]  Carme Àlvarez,et al.  A Very Hard log-Space Counting Class , 1993, Theor. Comput. Sci..

[43]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[44]  Pierre McKenzie,et al.  Extensions to Barrington's M-Program Model , 1993, Theor. Comput. Sci..

[45]  Anna Gi Semi-unbounded fan-in circuits: Boolean vs. arithmetic , 1995 .

[46]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[47]  H. Venkateswaran,et al.  Properties that characterize LOGCFL , 1987, J. Comput. Syst. Sci..

[48]  Pierre McKenzie,et al.  The complexity of tensor calculus , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[49]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[50]  Stephen A. Fenner,et al.  Gap-deenable Counting Classes , 1991 .

[51]  Neil Immerman,et al.  The Complexity of Iterated Multiplication , 1995, Inf. Comput..

[52]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[53]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.