暂无分享,去创建一个
[1] Andrea Bressan,et al. On the best constants in L 2 approximation. , 2019 .
[2] Hendrik Speleers,et al. NURBS in isogeometric discretization methods: A spectral analysis , 2020, Numer. Linear Algebra Appl..
[3] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[4] A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes , 2020, ArXiv.
[5] Michael S. Floater,et al. On periodic L2 n-widths , 2019, J. Comput. Appl. Math..
[6] Tom Lyche,et al. Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .
[7] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[8] Daniel Peterseim,et al. On the stability of the Rayleigh–Ritz method for eigenvalues , 2017, Numerische Mathematik.
[9] C. R. Deboor,et al. A practical guide to splines , 1978 .
[10] Stefan Takacs,et al. Approximation error estimates and inverse inequalities for B-splines of maximum smoothness , 2015, 1502.03733.
[11] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[12] Ivo Babuška,et al. On principles for the selection of shape functions for the Generalized Finite Element Method , 2002 .
[13] M. Floater,et al. On periodic L 2 n-widths , 2018 .
[14] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[15] Hendrik Speleers,et al. Algorithm 999 , 2019, ACM Transactions on Mathematical Software.
[16] Hendrik Speleers,et al. Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness , 2017, Numerische Mathematik.
[17] Hendrik Speleers,et al. Sharp error estimates for spline approximation: Explicit constants, n-widths, and eigenfunction convergence , 2018, Mathematical Models and Methods in Applied Sciences.
[18] Hendrik Speleers,et al. A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties , 2020, Comput. Aided Geom. Des..
[19] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[20] Hendrik Speleers,et al. Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis , 2020, Numerische Mathematik.
[21] A. Kolmogoroff,et al. Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .
[22] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[23] Alessandro Reali,et al. Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .
[24] Hendrik Speleers,et al. Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review , 2019, Archives of Computational Methods in Engineering.
[25] Hendrik Speleers,et al. Ritz-type projectors with boundary interpolation properties and explicit spline error estimates , 2021, ArXiv.
[26] Hendrik Speleers,et al. Isogeometric discretizations with generalized B-splines: Symbol-based spectral analysis , 2021 .
[27] Giancarlo Sangalli,et al. Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..
[28] Stefan Takacs,et al. Robust multigrid solvers for the biharmonic problem in isogeometric analysis , 2018, Comput. Math. Appl..
[29] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[30] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[31] Michael S. Floater,et al. Optimal Spline Spaces for $$L^2$$L2n-Width Problems with Boundary Conditions , 2017, 1709.02710.
[32] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[33] Michael S. Floater,et al. Optimal spline spaces of higher degree for L2 n-widths , 2017, J. Approx. Theory.
[34] Alessandro Reali,et al. Removal of spurious outlier frequencies and modes from isogeometric discretizations of second- and fourth-order problems in one, two, and three dimensions , 2021, Computer Methods in Applied Mechanics and Engineering.
[35] Jesse Chan,et al. Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: Explicit time-stepping and efficient mass matrix inversion , 2017, 1708.02972.
[36] Andrea Bressan,et al. Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.