Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations

We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain optimal spline subspaces. Roughly speaking, these optimal subspaces are obtained from the full spline space defined on certain uniform knot sequences by imposing specific additional boundary conditions. The spline subspaces of interest have been introduced in the literature some years ago when proving their optimality with respect to Kolmogorov n-widths in L-norm for some function classes. The eigenfunctions of the Laplacian — with any standard type of homogeneous boundary conditions — belong to such classes. Here we complete the analysis of the approximation properties of these optimal spline subspaces. In particular, we provide explicit L and H error estimates with full approximation order for Ritz projectors in the univariate and in the multivariate tensor-product setting. Besides their intrinsic interest, these estimates imply that, for a fixed number of degrees of freedom, all the eigenfunctions and the corresponding eigenvalues are well approximated, without loss of accuracy in the whole spectrum when compared to the full spline space. Moreover, there are no spurious values in the approximated spectrum. In other words, the considered subspaces provide accurate outlierfree discretizations in the univariate and in the multivariate tensor-product case. This main contribution is complemented by an explicit construction of B-spline-like bases for the considered spline subspaces. The role of such spaces as accurate discretization spaces for addressing general problems with non-homogeneous boundary behavior is discussed as well.

[1]  Andrea Bressan,et al.  On the best constants in L 2 approximation. , 2019 .

[2]  Hendrik Speleers,et al.  NURBS in isogeometric discretization methods: A spectral analysis , 2020, Numer. Linear Algebra Appl..

[3]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[4]  A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes , 2020, ArXiv.

[5]  Michael S. Floater,et al.  On periodic L2 n-widths , 2019, J. Comput. Appl. Math..

[6]  Tom Lyche,et al.  Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .

[7]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[8]  Daniel Peterseim,et al.  On the stability of the Rayleigh–Ritz method for eigenvalues , 2017, Numerische Mathematik.

[9]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[10]  Stefan Takacs,et al.  Approximation error estimates and inverse inequalities for B-splines of maximum smoothness , 2015, 1502.03733.

[11]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[12]  Ivo Babuška,et al.  On principles for the selection of shape functions for the Generalized Finite Element Method , 2002 .

[13]  M. Floater,et al.  On periodic L 2 n-widths , 2018 .

[14]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[15]  Hendrik Speleers,et al.  Algorithm 999 , 2019, ACM Transactions on Mathematical Software.

[16]  Hendrik Speleers,et al.  Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness , 2017, Numerische Mathematik.

[17]  Hendrik Speleers,et al.  Sharp error estimates for spline approximation: Explicit constants, n-widths, and eigenfunction convergence , 2018, Mathematical Models and Methods in Applied Sciences.

[18]  Hendrik Speleers,et al.  A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties , 2020, Comput. Aided Geom. Des..

[19]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[20]  Hendrik Speleers,et al.  Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis , 2020, Numerische Mathematik.

[21]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[22]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[23]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[24]  Hendrik Speleers,et al.  Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review , 2019, Archives of Computational Methods in Engineering.

[25]  Hendrik Speleers,et al.  Ritz-type projectors with boundary interpolation properties and explicit spline error estimates , 2021, ArXiv.

[26]  Hendrik Speleers,et al.  Isogeometric discretizations with generalized B-splines: Symbol-based spectral analysis , 2021 .

[27]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[28]  Stefan Takacs,et al.  Robust multigrid solvers for the biharmonic problem in isogeometric analysis , 2018, Comput. Math. Appl..

[29]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[30]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[31]  Michael S. Floater,et al.  Optimal Spline Spaces for $$L^2$$L2n-Width Problems with Boundary Conditions , 2017, 1709.02710.

[32]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[33]  Michael S. Floater,et al.  Optimal spline spaces of higher degree for L2 n-widths , 2017, J. Approx. Theory.

[34]  Alessandro Reali,et al.  Removal of spurious outlier frequencies and modes from isogeometric discretizations of second- and fourth-order problems in one, two, and three dimensions , 2021, Computer Methods in Applied Mechanics and Engineering.

[35]  Jesse Chan,et al.  Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: Explicit time-stepping and efficient mass matrix inversion , 2017, 1708.02972.

[36]  Andrea Bressan,et al.  Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.