Microbial metagenomics: beyond the genome.

Metagenomics literally means "beyond the genome." Marine microbial metagenomic databases presently comprise approximately 400 billion base pairs of DNA, only approximately 3% of that found in 1 ml of seawater. Very soon a trillion-base-pair sequence run will be feasible, so it is time to reflect on what we have learned from metagenomics. We review the impact of metagenomics on our understanding of marine microbial communities. We consider the studies facilitated by data generated through the Global Ocean Sampling expedition, as well as the revolution wrought at the individual laboratory level through next generation sequencing technologies. We review recent studies and discoveries since 2008, provide a discussion of bioinformatic analyses, including conceptual pipelines and sequence annotation and predict the future of metagenomics, with suggestions of collaborative community studies tailored toward answering some of the fundamental questions in marine microbial ecology.

[1]  D. Vaulot,et al.  Groups without Cultured Representatives Dominate Eukaryotic Picophytoplankton in the Oligotrophic South East Pacific Ocean , 2009, PloS one.

[2]  Florent E. Angly,et al.  Microbial Ecology of Four Coral Atolls in the Northern Line Islands , 2008, PloS one.

[3]  Robert G. Beiko,et al.  Identifying biologically relevant differences between metagenomic communities , 2010, Bioinform..

[4]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[5]  Robert A. Edwards,et al.  Bacterial carbon processing by generalist species in the coastal ocean , 2008, Nature.

[6]  Jo Handelsman,et al.  Metagenomics for studying unculturable microorganisms: cutting the Gordian knot , 2005, Genome Biology.

[7]  Yves Desdevises,et al.  Picoeukaryotic sequences in the Sargasso Sea metagenome , 2008, Genome Biology.

[8]  Philip Hugenholtz,et al.  Building on basic metagenomics with complementary technologies , 2007, Genome Biology.

[9]  Julian Gough,et al.  Genomic scale sub-family assignment of protein domains , 2006, Nucleic acids research.

[10]  S. Giovannoni,et al.  Molecular diversity and ecology of microbial plankton , 2005, Nature.

[11]  L. Ogilvie,et al.  Metagenomic marine nitrogen fixation--feast or famine? , 2005, Trends in microbiology.

[12]  Maureen L. Coleman,et al.  Microbial community gene expression in ocean surface waters , 2008, Proceedings of the National Academy of Sciences.

[13]  Edward F. DeLong,et al.  Screening of a Fosmid Library of Marine Environmental Genomic DNA Fragments Reveals Four Clones Related to Members of the OrderPlanctomycetales , 1998, Applied and Environmental Microbiology.

[14]  Gemma C. Langridge Testing the water: marine metagenomics , 2009, Nature Reviews Microbiology.

[15]  Andrzej Joachimiak,et al.  Predicting protein crystallization propensity from protein sequence , 2010, Journal of Structural and Functional Genomics.

[16]  Igor B. Rogozin,et al.  Genome Evolution , 2011, Adv. Bioinformatics.

[17]  Y. Boucher,et al.  Class 1 Integrons Potentially Predating the Association with Tn402-Like Transposition Genes Are Present in a Sediment Microbial Community , 2006, Journal of bacteriology.

[18]  Lior Pachter,et al.  Bioinformatics for Whole-Genome Shotgun Sequencing of Microbial Communities , 2005, PLoS Comput. Biol..

[19]  Hans-Peter Klenk,et al.  Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. , 2005, Environmental microbiology.

[20]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[21]  Mary Ann Moran,et al.  Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. , 2009, Environmental microbiology.

[22]  Jianping Xu,et al.  INVITED REVIEW: Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances , 2006, Molecular ecology.

[23]  J. Handelsman,et al.  Metagenomics: genomic analysis of microbial communities. , 2004, Annual review of genetics.

[24]  D. Caron,et al.  RELATIONSHIPS BETWEEN BACTERIA AND HETEROTROPHIC NANOPLANKTON IN MARINE AND FRESH WATERS - AN INTER-ECOSYSTEM COMPARISON , 1992 .

[25]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[26]  J. Gilbert,et al.  Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. , 2009, Environmental microbiology.

[27]  Edward F. DeLong,et al.  Microbial community genomics in the ocean , 2005, Nature Reviews Microbiology.

[28]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  Jan O. Korbel,et al.  Quantifying environmental adaptation of metabolic pathways in metagenomics , 2009, Proceedings of the National Academy of Sciences.

[30]  O. Béjà,et al.  Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights from metagenomics and environmental genomics. , 2005, Environmental microbiology.

[31]  Weizhong Li,et al.  Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. , 2009, Environmental microbiology.

[32]  Mihai Pop,et al.  Genome assembly reborn: recent computational challenges , 2009, Briefings Bioinform..

[33]  C. Pedrós-Alió Genomics and marine microbial ecology. , 2006, International microbiology : the official journal of the Spanish Society for Microbiology.

[34]  E. Delong,et al.  Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. , 2010, Environmental microbiology.

[35]  E. Delong,et al.  Unsuspected diversity among marine aerobic anoxygenic phototrophs , 2002, Nature.

[36]  Glen A. Tarran,et al.  High bacterivory by the smallest phytoplankton in the North Atlantic Ocean , 2008, Nature.

[37]  F. Not,et al.  New Insights into the Diversity of Marine Picoeukaryotes , 2009, PloS one.

[38]  Sukhdeep Singh,et al.  Metagenomics: Concept, methodology, ecological inference and recent advances , 2009, Biotechnology journal.

[39]  O. Béjà,et al.  Metagenomic retrieval of a ribosomal DNA repeat array from an uncultured marine alveolate. , 2008, Environmental microbiology.

[40]  Jo Handelsman,et al.  Biotechnological prospects from metagenomics. , 2003, Current opinion in biotechnology.

[41]  J. Handelsman,et al.  Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. , 1998, Chemistry & biology.

[42]  W. Doolittle,et al.  Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. , 2005, Environmental microbiology.

[43]  Thomas Mock,et al.  Genomic insights into marine microalgae. , 2008, Annual review of genetics.

[44]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[45]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[46]  James H. Brown,et al.  Microbial biogeography: putting microorganisms on the map , 2006, Nature Reviews Microbiology.

[47]  E. Delong,et al.  Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon , 1996, Journal of bacteriology.

[48]  E. Delong,et al.  Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes , 2007, The ISME Journal.

[49]  Sergei L. Kosakovsky Pond,et al.  Windshield splatter analysis with the Galaxy metagenomic pipeline. , 2009, Genome research.

[50]  D. Kamykowski,et al.  The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics , 2009 .

[51]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[52]  Tae Kyung Kim,et al.  Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. , 2006, Environmental microbiology.

[53]  Alison E. Murray,et al.  Comparative Genomics of DNA Fragments from Six Antarctic Marine Planktonic Bacteria , 2006, Applied and Environmental Microbiology.

[54]  Maureen L. Coleman,et al.  Genomic Islands and the Ecology and Evolution of Prochlorococcus , 2006, Science.

[55]  Haiwei Luo,et al.  Subcellular localization of marine bacterial alkaline phosphatases , 2009, Proceedings of the National Academy of Sciences.

[56]  John C. Wooley,et al.  A Primer on Metagenomics , 2010, PLoS Comput. Biol..

[57]  J. Gilbert,et al.  Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities , 2008, PloS one.

[58]  Oded Béjà,et al.  To BAC or not to BAC: marine ecogenomics. , 2004, Current opinion in biotechnology.

[59]  J. Baross,et al.  Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm , 2009, The ISME Journal.

[60]  Natalia N. Ivanova,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium. , 2006, Nature Reviews Microbiology.

[61]  Purificación López-García,et al.  Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat , 2007, PloS one.

[62]  Paul G Falkowski,et al.  Shotgun Sequencing in the Sea: A Blast from the Past? , 2004, Science.

[63]  J. Gilbert Aquatic metagenome library (archive; expression) generation and analysis , 2010 .

[64]  D. Karl Microbial oceanography: paradigms, processes and promise , 2007, Nature Reviews Microbiology.

[65]  F. Hårdeman,et al.  Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. , 2007, FEMS microbiology ecology.

[66]  R. Amann,et al.  Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. , 2009, Environmental microbiology.

[67]  Josh D Neufeld,et al.  Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. , 2008, Environmental microbiology.

[68]  J. Eisen,et al.  Assembling the Marine Metagenome, One Cell at a Time , 2009, PloS one.

[69]  F. Rodríguez-Valera,et al.  CO Dehydrogenase Genes Found in Metagenomic Fosmid Clones from the Deep Mediterranean Sea , 2009, Applied and Environmental Microbiology.

[70]  D. Willner,et al.  Metagenomic signatures of 86 microbial and viral metagenomes. , 2009, Environmental microbiology.

[71]  T. Oh,et al.  Isolation and Characterization of a Novel Lipase from a Metagenomic Library of Tidal Flat Sediments: Evidence for a New Family of Bacterial Lipases , 2006, Applied and Environmental Microbiology.

[72]  C. Schleper,et al.  Genomic studies of uncultivated archaea , 2005, Nature Reviews Microbiology.

[73]  C. Dupont,et al.  The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. , 2009, Environmental microbiology.

[74]  J. Handelsman,et al.  Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Caron,et al.  Protists are microbes too: a perspective , 2009, The ISME Journal.

[76]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[77]  Christopher D. Reeves,et al.  Metagenomic Analysis Reveals Diverse Polyketide Synthase Gene Clusters in Microorganisms Associated with the Marine Sponge Discodermia dissoluta , 2005, Applied and Environmental Microbiology.

[78]  E. Sherr,et al.  Significance of predation by protists in aquatic microbial food webs , 2004, Antonie van Leeuwenhoek.

[79]  Karl-Erich Jaeger,et al.  Advances in Recovery of Novel Biocatalysts from Metagenomes , 2008, Journal of Molecular Microbiology and Biotechnology.

[80]  J. Raes,et al.  Quantitative assessment of protein function prediction from metagenomics shotgun sequences , 2007, Proceedings of the National Academy of Sciences.

[81]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[82]  Benjamin J. Raphael,et al.  The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families , 2007, PLoS biology.

[83]  Diana Marco,et al.  Metagenomics and the niche concept , 2008, Theory in Biosciences.

[84]  E. Delong,et al.  Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. , 2001, Environmental microbiology.

[85]  C. Brearley,et al.  Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. , 2008, Environmental microbiology.

[86]  J. Handelsman Metagenomics: Application of Genomics to Uncultured Microorganisms , 2004, Microbiology and Molecular Biology Reviews.

[87]  Francisco P Chavez,et al.  Marine primary production in relation to climate variability and change. , 2011, Annual review of marine science.

[88]  Ruben E. Valas,et al.  Genome Evolution Studied Through Protein Structure , 2010 .

[89]  J. Archibald,et al.  The eukaryotic tree of life: endosymbiosis takes its TOL. , 2008, Trends in ecology & evolution.

[90]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[91]  Francisco Rodríguez-Valera,et al.  Environmental genomics, the big picture? , 2004, FEMS microbiology letters.

[92]  J. Marchesi,et al.  Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges , 2007, Applied Microbiology and Biotechnology.

[93]  J. Gilbert,et al.  Comparison of multiple metagenomes using phylogenetic networks based on ecological indices , 2010, The ISME Journal.

[94]  Jonathan Kennedy,et al.  Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments , 2008, Microbial cell factories.

[95]  Forest Rohwer,et al.  Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals , 2009, PloS one.

[96]  R. Edwards,et al.  Marine Environmental Genomics: Unlocking the Ocean's Secrets , 2007 .

[97]  Douglas B Rusch,et al.  Characterization of Prochlorococcus clades from iron-depleted oceanic regions , 2010, Proceedings of the National Academy of Sciences.

[98]  N. Ward New directions and interactions in metagenomics research. , 2006, FEMS microbiology ecology.

[99]  Mihai Pop,et al.  Assembly complexity of prokaryotic genomes using short reads , 2010, BMC Bioinformatics.

[100]  I. Paulsen,et al.  Coastal Synechococcus metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity. , 2009, Environmental microbiology.

[101]  B. De Baets,et al.  Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[102]  J. Eisen,et al.  Metagenomic Sequencing of an In Vitro-Simulated Microbial Community , 2010, PloS one.

[103]  M. Soares,et al.  Insights into a dinoflagellate genome through expressed sequence tag analysis , 2005, BMC Genomics.

[104]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[105]  Jed A. Fuhrman,et al.  Proteorhodopsins: an array of physiological roles? , 2008, Nature Reviews Microbiology.

[106]  H. Claustre,et al.  Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans , 2009, Proceedings of the National Academy of Sciences.

[107]  Susannah G. Tringe,et al.  Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones , 2009, Science.

[108]  J. Prosser,et al.  Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. , 2008, Environmental microbiology.

[109]  S. Baldauf,et al.  The Deep Roots of Eukaryotes , 2003, Science.

[110]  James H Brown,et al.  A latitudinal diversity gradient in planktonic marine bacteria , 2008, Proceedings of the National Academy of Sciences.

[111]  M. Moran,et al.  Dimethylsulfoniopropionate-Dependent Demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi , 2008, Journal of bacteriology.

[112]  M. Keller,et al.  Capturing the uncultivated majority. , 2006, Current opinion in biotechnology.

[113]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[114]  Jonathan P. Zehr,et al.  Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium , 2010, Nature.

[115]  C. Pedrós-Alió,et al.  Unveiling new microbial eukaryotes in the surface ocean. , 2008, Current opinion in microbiology.

[116]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[117]  Natalia Ivanova,et al.  Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities , 2006, Nature Biotechnology.

[118]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[119]  W. Streit,et al.  Metagenomics: advances in ecology and biotechnology. , 2005, FEMS microbiology letters.

[120]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[121]  C. Bowler,et al.  An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. , 2006, Current opinion in plant biology.

[122]  Natalya Yutin,et al.  Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. , 2007, Environmental microbiology.

[123]  Florent E. Angly,et al.  Metagenomic analysis of stressed coral holobionts. , 2009, Environmental microbiology.

[124]  Eun-Young Kim,et al.  Novel Cold-Adapted Alkaline Lipase from an Intertidal Flat Metagenome and Proposal for a New Family of Bacterial Lipases , 2008, Applied and Environmental Microbiology.

[125]  J. Handelsman,et al.  Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms , 2000, Applied and Environmental Microbiology.

[126]  J. McGrath,et al.  New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. , 2007, Environmental microbiology.

[127]  J. Gilbert,et al.  A rare SAR11 fosmid clone confirming genetic variability in the ‘Candidatus Pelagibacter ubique’ genome , 2008, The ISME Journal.

[128]  S. Tringe,et al.  Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton , 2010, Proceedings of the National Academy of Sciences.

[129]  I. Hewson,et al.  Metagenomic potential of microbial assemblages in the surface waters of the central Pacific Ocean tracks variability in oceanic habitat , 2009 .

[130]  Rick L. Stevens,et al.  Functional metagenomic profiling of nine biomes , 2008, Nature.

[131]  Forest Rohwer,et al.  An application of statistics to comparative metagenomics , 2006, BMC Bioinformatics.

[132]  J. Gilbert,et al.  Bias in assessments of marine microbial biodiversity in fosmid libraries as evaluated by pyrosequencing , 2009, The ISME Journal.

[133]  Z. Zeng,et al.  Characterization of a Deep-Sea Sediment Metagenomic Clone that Produces Water-Soluble Melanin in Escherichia coli , 2008, Marine Biotechnology.

[134]  S. Burton,et al.  Metagenomics, gene discovery and the ideal biocatalyst. , 2004, Biochemical Society transactions.

[135]  Scott A Givan,et al.  Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data , 2007, Biology Direct.

[136]  Itai Sharon,et al.  Comparative community genomics in the Dead Sea: an increasingly extreme environment , 2010, The ISME Journal.

[137]  M. Sebastián,et al.  The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA , 2009, The ISME Journal.

[138]  C. Schmeisser,et al.  Metagenomics, biotechnology with non-culturable microbes , 2007, Applied Microbiology and Biotechnology.