Increased resting functional connectivity in spike‐wave epilepsy in WAG/Rij rats

Functional magnetic resonance imaging (fMRI)–based resting functional connectivity is well suited for measuring slow correlated activity throughout brain networks. Epilepsy involves chronic changes in normal brain networks, and recent work demonstrated enhanced resting fMRI connectivity between the hemispheres in childhood absence epilepsy. An animal model of this phenomenon would be valuable for investigating fundamental mechanisms and testing therapeutic interventions.

[1]  Anthony B Waites,et al.  fMRI “deactivation” of the posterior cingulate during generalized spike and wave , 2003, NeuroImage.

[2]  Matthew N. DeSalvo,et al.  Dynamic Time Course of Typical Childhood Absence Seizures: EEG, Behavior, and Functional Magnetic Resonance Imaging , 2010, The Journal of Neuroscience.

[3]  P. Chauvel,et al.  Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms , 2009, Human brain mapping.

[4]  H. Blumenfeld Consciousness and epilepsy: why are patients with absence seizures absent? , 2005, Progress in brain research.

[5]  C. Segebarth,et al.  Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation , 2008, PLoS biology.

[6]  Joshua E. Motelow,et al.  Early treatment suppresses the development of spike‐wave epilepsy in a rat model , 2008, Epilepsia.

[7]  A. Coenen,et al.  The WAG/Rij rat model for absence epilepsy: age and sex factors , 1987, Epilepsy Research.

[8]  Lei Zhou,et al.  BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat , 2008, NeuroImage.

[9]  Suresh Gurbani,et al.  Frontal and temporal volumes in Childhood Absence Epilepsy , 2009, Epilepsia.

[10]  Yihong Yang,et al.  Mapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state , 2009, NeuroImage.

[11]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[12]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[13]  R. Kirk Experimental Design: Procedures for the Behavioral Sciences , 1970 .

[14]  Karl J. Friston,et al.  EEG–fMRI of idiopathic and secondarily generalized epilepsies , 2006, NeuroImage.

[15]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[16]  Jeffrey R Tenney,et al.  fMRI of Brain Activation in a Genetic Rat Model of Absence Seizures , 2004, Epilepsia.

[17]  E. Bilevicius,et al.  Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI , 2010, BMC Neuroscience.

[18]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[19]  G. Jackson,et al.  Functional connectivity networks are disrupted in left temporal lobe epilepsy , 2006, Annals of neurology.

[20]  E. Wirrell,et al.  Long-term psychosocial outcome in typical absence epilepsy. Sometimes a wolf in sheeps' clothing. , 1997, Archives of pediatrics & adolescent medicine.

[21]  Dustin Scheinost,et al.  DTI abnormalities in anterior corpus callosum of rats with spike–wave epilepsy , 2009, NeuroImage.

[22]  V. Haughton,et al.  Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. , 2001, AJNR. American journal of neuroradiology.

[23]  E. Golanov,et al.  Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. , 1994, The American journal of physiology.

[24]  Roger E. Kirk,et al.  Experimental design: Procedures for the behavioral sciences (3rd ed.). , 1995 .

[25]  Olaf Sporns,et al.  From Complex Networks to Intelligent Systems , 2009, Creating Brain-Like Intelligence.

[26]  Oliver Granert,et al.  Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges , 2008, NeuroImage.

[27]  Clara A. Scholl,et al.  Synchronized delta oscillations correlate with the resting-state functional MRI signal , 2007, Proceedings of the National Academy of Sciences.

[28]  Huafu Chen,et al.  Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. , 2011, Brain : a journal of neurology.

[29]  A. Kleinschmidt,et al.  Linking Generalized Spike‐and‐Wave Discharges and Resting State Brain Activity by Using EEG/fMRI in a Patient with Absence Seizures , 2006, Epilepsia.

[30]  H. Lu,et al.  Resting-State Functional Connectivity in Rat Brain , 2005 .

[31]  R T Constable,et al.  Resting functional connectivity between the hemispheres in childhood absence epilepsy , 2011, Neurology.

[32]  P Gloor,et al.  The Role of the Corpus Callosum in Bilateral Interhemispheric Synchrony of Spike and Wave Discharge in Feline Generalized Penicillin Epilepsy , 1980, Epilepsia.

[33]  Gaohong Wu,et al.  Alzheimer Disease: evaluation of a functional MR imaging index as a marker. , 2002, Radiology.

[34]  Karl J. Friston,et al.  Functional magnetic resonance imaging of human absence seizures , 2003, Annals of neurology.

[35]  A. Depaulis,et al.  Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy , 1989, Epilepsy Research.

[36]  Hal Blumenfeld,et al.  Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures , 2010, Epilepsia.

[37]  Q. Gong,et al.  Altered functional connectivity in default mode network in absence epilepsy: A resting‐state fMRI study , 2011, Human brain mapping.

[38]  F. Hyder,et al.  Relative Changes in Cerebral Blood Flow and Neuronal Activity in Local Microdomains during Generalized Seizures , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  F. Hyder,et al.  Remote Effects of Focal Hippocampal Seizures on the Rat Neocortex , 2008, The Journal of Neuroscience.

[40]  E. van Luijtelaar,et al.  Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats , 2003, Behavior genetics.

[41]  P. Camfield,et al.  Epileptic Syndromes in Childhood: Clinical Features, Outcomes, and Treatment , 2002, Epilepsia.

[42]  J. Lurito,et al.  Correlations in Low-Frequency BOLD Fluctuations Reflect Cortico-Cortical Connections , 2000, NeuroImage.

[43]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[44]  D. Pinault,et al.  Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy , 1998, The Journal of physiology.

[45]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[46]  Hal Blumenfeld,et al.  Neuroimaging biomarkers of epileptogenesis , 2011, Neuroscience Letters.

[47]  Carolina Ciumas,et al.  The dopamine system in idiopathic generalized epilepsies: Identification of syndrome-related changes , 2010, NeuroImage.

[48]  M. Lowe,et al.  Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations , 1998, NeuroImage.

[49]  M. Greicius Resting-state functional connectivity in neuropsychiatric disorders , 2008, Current opinion in neurology.

[50]  K. Endo,et al.  Semiquantitative analysis of interictal glucose metabolism between generalized epilepsy and localization related epilepsy , 2004, Annals of nuclear medicine.

[51]  D. Auer Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the 'resting' brain. , 2008, Magnetic resonance imaging.

[52]  J. Gotman,et al.  Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Matthew N. DeSalvo,et al.  Where fMRI and Electrophysiology Agree to Disagree: Corticothalamic and Striatal Activity Patterns in the WAG/Rij Rat , 2011, The Journal of Neuroscience.

[54]  J. R. Hughes,et al.  Absence seizures: A review of recent reports with new concepts , 2009, Epilepsy & Behavior.

[55]  Fahmeed Hyder,et al.  Dynamic fMRI and EEG Recordings during Spike-Wave Seizures and Generalized Tonic-Clonic Seizures in WAG/Rij Rats , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[56]  I Savic,et al.  Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[57]  Reinhold Ludwig,et al.  Corticothalamic Modulation during Absence Seizures in Rats: A Functional MRI Assessment , 2003, Epilepsia.

[58]  J. Lurito,et al.  Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. , 2002, Radiology.

[59]  P. Skudlarski,et al.  Brain Connectivity Related to Working Memory Performance , 2006, The Journal of Neuroscience.

[60]  Hal Blumenfeld,et al.  Impaired attention and network connectivity in childhood absence epilepsy , 2011, NeuroImage.