Coordination polymers of 5,5′-dithiobis(2-nitrobenzoic acid): Synthesis, structure and topology

[1]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[2]  Fu-Sheng Guo,et al.  Lanthanide oxide clusters: from tetrahedral [Dy4(μ4-O)](10+) to supertetrahedral [Ln20(μ4-O)11]38+ (Ln = Tb, Dy, Ho, Er). , 2013, Chemistry.

[3]  H. Titi,et al.  1D, 2D and 3D coordination polymers of 5,5′-methylenebis(oxy)dinicotinic acid with Co(II), Mn(II), Cu(II) and Cd(II) ions , 2013 .

[4]  Bryana L. Henderson,et al.  Photophysical pore control in an azobenzene-containing metal–organic framework , 2013 .

[5]  H. Titi,et al.  Metal–organic coordination polymers with a new 3,5-(4-carboxybenzyloxy) benzoic acid linker , 2013 .

[6]  H. Hou,et al.  First Three-Dimensional Self-Penetrating Coordination Polymer Containing Rare (10,3)-d Subnets: Synthesis, Structure, and Properties , 2013 .

[7]  H. Titi,et al.  Coordination polymers of flexible poly-carboxylic acids with metal ions. IV. Syntheses, structures, and magnetic properties of polymeric networks of 5-(3,5)-(dicarboxybenzyloxy)isophthalic acid with Cd(II), Cu(II), Co(II) and Mn(II) ions , 2013 .

[8]  H. Titi,et al.  Coordination polymers of flexible polycarboxylic acids with metal ions. V. polymeric frameworks of 5-(3,5-dicarboxybenzyloxy)-3-pyridine carboxylic acid with Cd(II), Cu(II), Co(II), Mn(II) and Ni(II) ions; synthesis, structure, and magnetic properties , 2013 .

[9]  Y. Chabal,et al.  When metal organic frameworks turn into linear magnets , 2013, 1302.6886.

[10]  G. Mínguez Espallargas,et al.  Dynamic magnetic MOFs. , 2013, Chemical Society reviews.

[11]  Giannis S. Papaefstathiou,et al.  A flexible Cd2+ metal organic framework with a unique (3,3,6)-connected topology, unprecedented secondary building units and single crystal to single crystal solvent exchange properties , 2012 .

[12]  J. Ding,et al.  Origin of long-range ferromagnetic ordering in metal-organic frameworks with antiferromagnetic dimeric-Cu(II) building units. , 2009, Journal of the American Chemical Society.

[13]  P. Feng,et al.  Single-walled polytetrazolate metal-organic channels with high density of open nitrogen-donor sites and gas uptake. , 2012, Journal of the American Chemical Society.

[14]  Wenlong Liu,et al.  Cd(II) coordination polymers constructed from flexible disulfide ligand: Solvothermal syntheses, structures and luminescent properties , 2011 .

[15]  H. Furukawa,et al.  A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. , 2011, Journal of the American Chemical Society.

[16]  V. Pavlishchuk,et al.  Antiferromagnetic ordering in cobalt(II) and nickel(II) 1D coordination polymers with the dithioamide of 1,3-benzenedicarboxylic acid , 2011 .

[17]  Martin R. Lohe,et al.  A highly porous flexible Metal-Organic Framework with corundum topology. , 2011, Chemical communications.

[18]  A. Karmakar,et al.  Flexible porphyrin tetracarboxylic acids for crystal engineering , 2010 .

[19]  C. Näther,et al.  Solid-state transformation of [Co(NCS)2(pyridine)4] into [Co(NCS)2(pyridine)2]n: from Curie-Weiss paramagnetism to single chain magnetic behaviour. , 2010, Dalton transactions.

[20]  X. Bu,et al.  Homospin single-chain magnet with 1D ferromagnetic azido-cobalt Ising-type chain. , 2010, Chemical communications.

[21]  M. Yamashita,et al.  Single-chain magnets constructed by using the strict orthogonality of easy-planes: use of structural flexibility to control the magnetic properties. , 2010, Inorganic chemistry.

[22]  Zhong-Yi Liu,et al.  Two 3D triazolate-tricarboxylate-bridged Cu(II/I) frameworks by one-pot hydrothermal synthesis exhibiting spin-canted antiferromagnetism and strong antiferromagnetic couplings. , 2010, Inorganic chemistry.

[23]  Yaoyu Wang,et al.  Synthesis and Structures of Two Novel Three-Dimensional Metal−Organic Frameworks: Comprising an Unprecedented Tetraflexure Helix , 2010 .

[24]  Shaoming Fang,et al.  Cadmium(II) Complexes with 2,2′‐Dithiodibenzoate Ligand: Syntheses, Crystal Structures, and Emission Properties , 2010 .

[25]  Clare E. Rowland,et al.  Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds: In Situ Ligand Synthesis versus Direct Assembly , 2010 .

[26]  Yaoyu Wang,et al.  Three new zinc(II) coordination polymers: Modulation of extended structures driven by assistant ligands , 2009 .

[27]  Mingyan Wu,et al.  A luminescent homochiral 3D Cd(II) framework with a threefold interpenetrating uniform net 8(6). , 2009, Chemical communications.

[28]  J. Yi,et al.  Long-range Ferromagnetic Ordering and Magnetic Phase Transition in Metal-organic Frameworks , 2009, 0905.2472.

[29]  Daoben Zhu,et al.  Crystal-to-crystal transformation from antiferromagnetic chains into a ferromagnetic diamondoid framework. , 2009, Journal of the American Chemical Society.

[30]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[31]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[32]  Xiao‐Ming Chen,et al.  Probing single-chain magnets in a family of linear chain compounds constructed by magnetically anisotropic metal-ions and cyclohexane-1,2-dicarboxylate analogues. , 2008, Inorganic Chemistry.

[33]  X. Bu,et al.  Nickel(II)-azido ferromagnetic chains in a 3D porous metal-organic framework with breathing guest molecules. , 2008, Dalton transactions.

[34]  M. V. Rajasekharan,et al.  A cubic 3d-4f structure with only ferromagnetic Gd-Mn interactions. , 2007, Angewandte Chemie.

[35]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[36]  J. Kortus,et al.  Very strong ferromagnetic interaction in a new binuclear mu-methoxo-bridged Mn(III) complex: synthesis, crystal structure, magnetic properties, and DFT calculations. , 2006, Journal of the American Chemical Society.

[37]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[38]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[39]  J. Rawson,et al.  Hydrothermal synthesis and magnetic properties of novel Mn(II) and Zn(II) materials with thiolato-carboxylate donor ligand frameworks. , 2004, Dalton transactions.

[40]  J. Bünzli,et al.  Structural, Photophysical and Chiro-Optical Properties of Lanthanide Complexes with a Bis-(benzimidazole)pyridine-Based Chiral Ligand , 2003 .

[41]  C. Riener,et al.  Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4′-dithiodipyridine , 2002, Analytical and bioanalytical chemistry.

[42]  R. Murugavel,et al.  Reactions of 2-mercaptobenzoic acid with divalent alkaline earth metal ions: synthesis, spectral studies, and single-crystal X-ray structures of calcium, strontium, and barium complexes of 2,2'-dithiobis(benzoic acid). , 2001, Inorganic chemistry.

[43]  I. V. Koval The chemistry of disulfides , 1994 .

[44]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[45]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[46]  A. Karmakar,et al.  Coordination polymers of flexible tetracarboxylic acids with metal ions. II. Supramolecular assemblies of 5,5′-methylene- and 5,5′-(ethane-1,2-diyl)-bis(oxy)diisophthalic acid ligands with d-transition metals , 2011 .

[47]  A. Karmakar,et al.  Coordination polymers of flexible tetracarboxylic acids with metal ions. I. Synthesis of CH2- and (CH2)2-spaced bis(oxy)isophthalic acid ligands, and structural characterization of their polymeric adducts with lanthanoid ions , 2011 .

[48]  B. Viana,et al.  Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials , 2008 .

[49]  J. Sedlák,et al.  Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. , 1968, Analytical biochemistry.