10 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors

In-field analysis (e.g., clinical and diagnostics) using nanostructured porous silicon (PSi) for label-free optical biosensing has been hindered so far by insufficient sensitivity of PSi biosensors. Here we report on a label-free PSi interferometric aptasensor able to specifically detect tumor necrosis factor alpha (TNFα, a protein biomarker of inflammation and sepsis) at concentration down to 3.0 nM with signal-to-noise ratio (S/N) of 10.6 and detection limit (DL) of 200 pM. This represents a 10 000-fold improvement with respect to direct (i.e., nonamplified) label-free PSi biosensors and pushes PSi biosensors close to the most sensitive optical and label-free transduction techniques, e.g., surface plasmon resonance (SPR) for which a lowest DL of 100 pM in aptasensing has been reported. A factor 1000 in improvement is achieved by introducing a novel signal-processing technique for the optical readout of PSi interferometers, namely, interferogram average over wavelength (IAW) reflectance spectroscopy. The...

[1]  Bastian E. Rapp,et al.  Biosensors with label-free detection designed for diagnostic applications , 2010, Analytical and bioanalytical chemistry.

[2]  Luca De Stefano,et al.  DNA Optical Detection Based on Porous Silicon Technology: from Biosensors to Biochips , 2007, Sensors (Basel, Switzerland).

[3]  M. Kuwahara,et al.  In vitro selection of BNA (LNA) aptamers , 2013, Artificial DNA, PNA & XNA.

[4]  A. Gustavo González,et al.  A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles , 2007 .

[5]  Kristopher A Kilian,et al.  The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. , 2009, Chemical communications.

[6]  Mervyn Singer,et al.  Biomarkers in sepsis , 2013, Current Opinion in Pulmonary Medicine.

[7]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[8]  N. Voelcker,et al.  Applications of zero-valent silicon nanostructures in biomedicine. , 2015, Nanomedicine.

[9]  Charles C. Chaffin,et al.  Internally Referenced Remote Sensors for HF and Cl2 Using Reactive Porous Silicon Photonic Crystals , 2011 .

[10]  J. Buriak,et al.  Chemical and Biological Applications of Porous Silicon Technology , 2000 .

[11]  N. Voelcker,et al.  Polymerization-Amplified Optical DNA Detection on Porous Silicon Templates. , 2012, ACS macro letters.

[12]  Claudia Pacholski,et al.  Photonic Crystal Sensors Based on Porous Silicon , 2013, Sensors.

[13]  Luca De Stefano,et al.  Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection , 2013, Journal of The Royal Society Interface.

[14]  J. Sipe,et al.  Nanoscale porous silicon waveguide for label-free DNA sensing. , 2008, Biosensors & bioelectronics.

[15]  Lianghai Hu,et al.  Aptamer in bioanalytical applications. , 2011, Analytical chemistry.

[16]  Nicolas H. Voelcker,et al.  Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection , 2014 .

[17]  William J Peveler,et al.  Selectivity and Specificity: Pros and Cons in Sensing. , 2016, ACS sensors.

[18]  B. Coasne,et al.  Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[19]  Martin J. Sweetman,et al.  Interferometric porous silicon transducers using an enzymatically amplified optical signal , 2011 .

[20]  Ying Zhu,et al.  Functionalised porous silicon as a biosensor: emphasis on monitoring cells in vivo and in vitro. , 2013, The Analyst.

[21]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[22]  M. Sailor,et al.  Charge-gated transport of proteins in nanostructured optical films of mesoporous silica. , 2011, Analytical chemistry.

[23]  R. Schasfoort,et al.  TUTORIAL REVIEW , 2001 .

[24]  G. Mayer The chemical biology of aptamers. , 2009, Angewandte Chemie.

[25]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[26]  Sharon M. Weiss,et al.  Label-free porous silicon membrane waveguide for DNA sensing , 2008 .

[27]  V. Chamard,et al.  Origin of a parasitic surface film on p+ type porous silicon , 1998 .

[28]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[29]  James F Rusling,et al.  Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. , 2010, The Analyst.

[30]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[31]  W. Freeman,et al.  Porous silicon in drug delivery devices and materials. , 2008, Advanced drug delivery reviews.

[32]  Sharon M. Weiss,et al.  Effect of DNA-induced corrosion on passivated porous silicon biosensors. , 2014, ACS applied materials & interfaces.

[33]  Stefano Mariani,et al.  Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing. , 2016, Analytical chemistry.

[34]  A.V. Lakhin,et al.  Aptamers: Problems, Solutions and Prospects , 2013, Acta naturae.

[35]  Abhishek Parashar,et al.  Aptamers in Therapeutics. , 2016, Journal of clinical and diagnostic research : JCDR.

[36]  Andreas Janshoff,et al.  Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing , 1998 .

[37]  D. Wakefield,et al.  Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals. , 2015, Analytical chemistry.

[38]  Michael J. Sailor,et al.  Fundamentals of Porous Silicon Preparation , 2012 .

[39]  Ester Segal,et al.  Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds. , 2015, Analytical chemistry.

[40]  Ester Segal,et al.  Oxidized Porous Silicon Nanostructures Enabling Electrokinetic Transport for Enhanced DNA Detection , 2015 .