On the robustness of multiscale hybrid-mixed methods

[1]  Frédéric Legoll,et al.  MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems , 2013 .

[2]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[3]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[4]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Space Based on Homogenization for Heterogeneous Elliptic Problems , 2013, SIAM J. Numer. Anal..

[5]  Diego Paredes,et al.  A family of Multiscale Hybrid-Mixed finite element methods for the Darcy equation with rough coefficients , 2013, J. Comput. Phys..

[6]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[7]  Henrique M. Versieux,et al.  Convergence Analysis for The Numerical Boundary Corrector for Elliptic Equations with Rapidly Oscillating Coefficients , 2008, SIAM J. Numer. Anal..

[8]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[9]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[12]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[13]  Grégoire Allaire,et al.  Boundary layer tails in periodic homogenization , 1999 .

[14]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[15]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[16]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[17]  Georges Griso Error estimate and unfolding for periodic homogenization , 2004 .

[18]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[19]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[20]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[21]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[22]  Ivo Babuška,et al.  Solution of Interface Problems by Homogenization. I , 1976 .

[23]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[24]  Mary F. Wheeler,et al.  A multiscale mortar multipoint flux mixed finite element method , 2012 .

[25]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[26]  Bogdan Vernescu,et al.  Error estimates for periodic homogenization with non-smooth coefficients , 2007, Asymptot. Anal..

[27]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[28]  CHRISTOPHER HARDER,et al.  On a Multiscale Hybrid-Mixed Method for Advective-Reactive Dominated Problems with Heterogeneous Coefficients , 2015, Multiscale Model. Simul..

[29]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[30]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[31]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[32]  Diego Paredes,et al.  Multiscale Hybrid-Mixed Method , 2013, SIAM J. Numer. Anal..

[33]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .