Tight Bounds on Computing Error-Correcting Codes by Bounded-Depth Circuits With Arbitrary Gates

We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}<sup>Ω(n)</sup>→{0,1}<sup>n</sup> with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: 1) if d=2, then w=Θ(n (lgn/lglgn)<sup>2</sup>); 2) if d=3, then w=Θ(nlglgn); 3) if d=2k or d=2k+1 for some integer k ≥ 2, then w=Θ(nλ<sub>k</sub>(n)), where λ<sub>1</sub>(n)=⌈lgn⌉, λ<sub>i+1</sub>(n)=λ<sub>i</sub>*(n), and the * operation gives how many times one has to iterate the function λ<sub>i</sub> to reach a value at most 1 from the argument n; and 4) if d=lg*n, then w=O(n). For depth d=2, our Ω(n (lgn/lglgn)<sup>2</sup>) lower bound gives the largest known lower bound for computing any linear map. The upper bounds imply that a (necessarily dense) generator matrix for our code can be written as the product of two sparse matrices. Using known techniques, we also obtain similar (but not tight) bounds for computing pairwise-independent hash functions. Our lower bounds are based on a superconcentrator-like condition that the graphs of circuits computing good codes must satisfy. This condition is provably intermediate between superconcentrators and their weakenings considered before.

[1]  Shachar Lovett,et al.  Bounded-Depth Circuits Cannot Sample Good Codes , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[2]  Peter Bro Miltersen Error correcting codes, perfect hashing circuits, and deterministic dynamic dictionaries , 1998, SODA '98.

[3]  Ravi B. Boppana,et al.  The Average Sensitivity of Bounded-Depth Circuits , 1997, Inf. Process. Lett..

[4]  Emanuele Viola,et al.  The complexity of constructing pseudorandom generators from hard functions , 2005, computational complexity.

[5]  Richard J. Lipton,et al.  Lower Bounds for Constant Depth Circuits for Prefix Problems , 1983, ICALP.

[6]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[7]  Venkatesan Guruswami,et al.  Expander-based constructions of efficiently decodable codes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[8]  Richard J. Lipton,et al.  Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..

[9]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[10]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[11]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[12]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[13]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[14]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[15]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[16]  Rafail Ostrovsky,et al.  Cryptography with constant computational overhead , 2008, STOC.

[17]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[18]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[19]  James G. Oxley,et al.  Matroid theory , 1992 .

[20]  Vojtech Rödl,et al.  Some combinatorial-algebraic problems from complexity theory , 1994, Discret. Math..

[21]  Peter Bro Miltersen,et al.  Are bitvectors optimal? , 2000, STOC '00.

[22]  Noga Alon,et al.  Superconcentrators of Depths 2 and 3; Odd Levels Help (Rarely) , 1994, J. Comput. Syst. Sci..

[23]  Jaikumar Radhakrishnan,et al.  Tradeoffs in Depth-Two Superconcentrators , 2006, STACS.

[24]  D. Spielman,et al.  Computationally efficient error-correcting codes and holographic proofs , 1995 .

[25]  Noam Nisan,et al.  The computational complexity of universal hashing , 1990, STOC '90.

[26]  Hazel Perfect,et al.  Applications of Menger's graph theorem , 1968 .

[27]  Leslie G. Valiant,et al.  On non-linear lower bounds in computational complexity , 1975, STOC.

[28]  Mohammad Mahdian,et al.  The Minimum Distance of Turbo-Like Codes , 2009, IEEE Transactions on Information Theory.

[29]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[30]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[31]  Sanjoy K. Mitter,et al.  Endcoding complexity versus minimum distance , 2005, IEEE Transactions on Information Theory.