Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.

[1]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[2]  R. V. Morris,et al.  Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[3]  D. Ming,et al.  Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[4]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[5]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[6]  Satyandra K. Gupta,et al.  Curiosity's Mars Hand Lens Imager (MAHLI) : inital observations and activities. , 2013 .

[7]  Jeffrey R. Johnson,et al.  INITIAL MULTISPECTRAL IMAGING RESULTS FROM THE MARS SCIENCE LABORATORY MASTCAM INVESTIGATION AT THE GALE CRATER FIELD SITE. J.F. Bell III , 2013 .

[8]  K. Robertson,et al.  Constraints on the distribution of CaSO4·nH2O phases on Mars and implications for their contribution to the hydrological cycle , 2013 .

[9]  D. Ming,et al.  Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater , 2013 .

[10]  D. Ming,et al.  The Amorphous Component in Martian Basaltic Soil in Global Perspective from MSL and MER Missions , 2013 .

[11]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[12]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[13]  Hongwei Ma,et al.  Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory , 2012 .

[14]  Luther W. Beegle,et al.  Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System , 2012 .

[15]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[16]  R. E. Arvidson,et al.  Ancient Impact and Aqueous Processes at Endeavour Crater, Mars , 2012, Science.

[17]  D. Ming,et al.  The Sample Analysis at Mars Investigation and Instrument Suite , 2012 .

[18]  R. Gellert,et al.  Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer , 2012 .

[19]  M. A. Ravine,et al.  Mastcam Multispectral Imaging on the Mars Science Laboratory Rover: Wavelength Coverage and Imaging Strategies at the Gale Crater Field Site , 2012 .

[20]  J. Bell,et al.  Mapping Hydrated Materials with MER Pancam and MSL Mastcam: Results from Gusev Crater and Meridiani Planum, and Plans for Gale Crater , 2011 .

[21]  R. Milliken,et al.  Terrestrial Perspective on Authigenic Clay Mineral Production in Ancient Martian Lakes , 2011 .

[22]  Simon J. Hook,et al.  Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data , 2011 .

[23]  K. Herkenhoff,et al.  Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rov , 2011 .

[24]  William H. Farrand,et al.  Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .

[25]  H. McSween,et al.  Constraints on the Stabilities of Observed Martian Secondary Mineral Phases from Geothermal Gradient Models , 2011 .

[26]  S. Squyres,et al.  Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars , 2010 .

[27]  Reg G. Willson,et al.  The Mars Science Laboratory (MSL) Mast-mounted Cameras (Mastcams) Flight Instruments , 2010 .

[28]  J. Mustard,et al.  The Case for Mixed-layered Clays on Mars , 2010 .

[29]  J. Grotzinger,et al.  Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater , 2010 .

[30]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[31]  John P. Grotzinger,et al.  Beyond water on Mars , 2009 .

[32]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[33]  D. Vaniman,et al.  Bassanite on Mars , 2009 .

[34]  William H. Farrand,et al.  Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills , 2008 .

[35]  T. Glotch,et al.  Thermal transformations of akaganéite and lepidocrocite to hematite: assessment of possible precursors to Martian crystalline hematite , 2008 .

[36]  P. Mirwald Experimental study of the dehydration reactions gypsum-bassanite and bassanite-anhydrite at high pressure: indication of anomalous behavior of H(2)O at high pressure in the temperature range of 50-300 degrees C. , 2008, The Journal of chemical physics.

[37]  M. V. Mironenko,et al.  Timing of acid weathering on Mars: A kinetic‐thermodynamic assessment , 2007 .

[38]  Dmitry Savransky,et al.  Chromaticity of the Martian sky as observed by the Mars Exploration Rover Pancam instruments , 2006 .

[39]  D. Vaniman,et al.  Transformations of Mg- and Ca-sulfate hydrates in Mars regolith , 2006 .

[40]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[41]  D. Möhlmann,et al.  Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals , 2006 .

[42]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[43]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[44]  F. Mees,et al.  Vertical variations in bassanite distribution patterns in near-surface sediments, southern Egypt , 2005 .

[45]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[46]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[47]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[48]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[49]  D. Vaniman,et al.  Stability of hydrous minerals on the martian surface , 2003 .

[50]  William M. Drennan,et al.  Constraining the inertial dissipation method using the vertical velocity variance , 2003 .

[51]  S. Douglas,et al.  Mineral biosignatures in evaporites: Presence of rosickyite in an endoevaporitic microbial community from Death Valley, California , 2002 .

[52]  David L. Bish,et al.  FULLPAT: a full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns , 2002 .

[53]  M. Oetzel,et al.  Einfluss von Umgebungsfeuchte und Temperatur auf die Phasenumwandlungen im System CaSO4-H2O : Ein Beitrag zur Herstellung von phasenreinen Bindemitteln aus REA-Gips , 2000 .

[54]  R. Clayton,et al.  Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.

[55]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[56]  T. Worku,et al.  Occurrence of bassanite in Lower Lias rocks of the Lyme Regis area, England , 1992, Mineralogical Magazine.

[57]  Keith Refson,et al.  Computer simulation of interlayer water in 2:1 clays , 1991 .

[58]  David V. LeMone,et al.  White Sands National Monument, New Mexico , 1987 .

[59]  H. K. Chang,et al.  Comparisons Between the Diagenesis of Dioctahedral and Trioctahedral Smectite, Brazilian Offshore Basins , 1986 .

[60]  N. Smith,et al.  Occurrence and Formation of Water-Laid Placers , 1986 .

[61]  B. Jones,et al.  Clay Minerals of Lake Abert, an Alkaline, Saline Lake , 1983 .

[62]  D. Dethier,et al.  Clay Minerals in the 1980 Deposits from Mount St. Helens , 1982 .

[63]  M. Nambu New mineral Akaganeite, β-FeOOH, from Akagane Mine, Iwate Prefecture, Japan , 1968 .

[64]  C. I. Rich Hydroxy Interlayers in Expansible Layer Silicates , 1968 .

[65]  L. Hardie,et al.  THE GYPSUM-ANHYDRITE EQUILIBRIUM AT ONE ATMOSPHERE PRESSURE1 , 2007 .