High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities.

[1]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[2]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[3]  P. Cramer,et al.  The interaction landscape between transcription factors and the nucleosome , 2017, Nature.

[4]  Frédéric Delsuc,et al.  ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets , 2017, Nucleic Acids Res..

[5]  D. Schübeler,et al.  Impact of cytosine methylation on DNA binding specificities of human transcription factors , 2017, Science.

[6]  Prabodhika Mallikaratchy,et al.  Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens , 2017, Molecules.

[7]  A. Sequeira,et al.  High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery , 2017, Microbial Cell Factories.

[8]  Silvio C. E. Tosatto,et al.  InterPro in 2017—beyond protein family and domain annotations , 2016, Nucleic Acids Res..

[9]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[10]  A. Jolma,et al.  DNA-dependent formation of transcription factor pairs alters their binding specificity , 2015, Nature.

[11]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[12]  C. Gissi,et al.  Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis , 2015 .

[13]  Jussi Taipale,et al.  Conservation of transcription factor binding specificities across 600 million years of bilateria evolution , 2015, eLife.

[14]  Mihai Albu,et al.  C2H2 zinc finger proteins greatly expand the human regulatory lexicon , 2015, Nature Biotechnology.

[15]  Y. Satou,et al.  Gene regulatory systems that control gene expression in the Ciona embryo , 2015, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[16]  R. Vincentelli,et al.  High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli , 2014, Journal of visualized experiments : JoVE.

[17]  G. Wong,et al.  A Promiscuous Intermediate Underlies the Evolution of LEAFY DNA Binding Specificity , 2014, Science.

[18]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[19]  R. Vincentelli,et al.  High-throughput protein expression screening and purification in Escherichia coli. , 2011, Methods.

[20]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[21]  Michael Levine,et al.  Regulatory Blueprint for a Chordate Embryo , 2006, Science.

[22]  N. Satoh,et al.  Systematic analysis of embryonic expression profiles of zinc finger genes in Ciona intestinalis. , 2006, Developmental biology.

[23]  N. Satoh,et al.  Cataloging transcription factor and major signaling molecule genes for functional genomic studies in Ciona intestinalis , 2005, Development Genes and Evolution.

[24]  Yutaka Satou,et al.  Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks , 2004, Development.

[25]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[26]  Takeshi Kawashima,et al.  A cDNA resource from the basal chordate Ciona intestinalis , 2002, Genesis.

[27]  Graziano Pesole,et al.  An algorithm for finding signals of unknown length in DNA sequences , 2001, ISMB.

[28]  J. Collado-Vides,et al.  The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. , 2000, Nucleic acids research.

[29]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[30]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.