Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state

[1]  J. A. Nieto-Garai,et al.  Functional organization of the HIV lipid envelope , 2016, Scientific Reports.

[2]  Barbara Müller,et al.  Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. , 2016, ACS nano.

[3]  C. Eggeling,et al.  A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics , 2015, Methods.

[4]  E. Freed,et al.  HIV-1 assembly, release and maturation , 2015, Nature Reviews Microbiology.

[5]  J. Konvalinka,et al.  Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor , 2015, Nature Communications.

[6]  C. Eggeling,et al.  Spectral Imaging to Measure Heterogeneity in Membrane Lipid Packing , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  K. Gaus,et al.  Self-calibrated line-scan STED-FCS to quantify lipid dynamics in model and cell membranes. , 2015, Biophysical journal.

[8]  Christian Eggeling,et al.  Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells , 2014, Nature Communications.

[9]  David S. Goodsell,et al.  3D molecular models of whole HIV-1 virions generated with cellPACK , 2014, Faraday discussions.

[10]  Thorsten Lang,et al.  Multi-protein assemblies underlie the mesoscale organization of the plasma membrane , 2014, Nature Communications.

[11]  Hans-Georg Kräusslich,et al.  Comparative lipidomics analysis of HIV‐1 particles and their producer cell membrane in different cell lines , 2013, Cellular microbiology.

[12]  N. Kol,et al.  Virion stiffness regulates immature HIV-1 entry , 2013, Retrovirology.

[13]  Thorsten Staudt,et al.  Maturation-Dependent HIV-1 Surface Protein Redistribution Revealed by Fluorescence Nanoscopy , 2012, Science.

[14]  J. Hofkens,et al.  Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction , 2011, PLoS pathogens.

[15]  Enrico Gratton,et al.  Lessons in fluctuation correlation spectroscopy. , 2011, Annual review of physical chemistry.

[16]  H. Kräusslich,et al.  HIV-1 Gag Processing Intermediates Trans-dominantly Interfere with HIV-1 Infectivity* , 2009, The Journal of Biological Chemistry.

[17]  F. Wieland,et al.  Probing HIV-1 Membrane Liquid Order by Laurdan Staining Reveals Producer Cell-dependent Differences* , 2009, The Journal of Biological Chemistry.

[18]  Jonas Ries,et al.  Accurate determination of membrane dynamics with line-scan FCS. , 2009, Biophysical journal.

[19]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[20]  Marc C. Johnson,et al.  Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. , 2008, Cell host & microbe.

[21]  S. Nishimura,et al.  Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. , 2008, Biophysical journal.

[22]  Marko Lampe,et al.  Double-labelled HIV-1 particles for study of virus-cell interaction. , 2007, Virology.

[23]  David Barlam,et al.  A stiffness switch in human immunodeficiency virus. , 2007, Biophysical journal.

[24]  Jonas Ries,et al.  Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. , 2006, Biophysical journal.

[25]  Hans-Georg Kräusslich,et al.  The HIV lipidome: a raft with an unusual composition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Nishimura,et al.  Cholesterol depletion induces solid-like regions in the plasma membrane. , 2006, Biophysical journal.

[27]  M. Tremblay,et al.  Plunder and Stowaways: Incorporation of Cellular Proteins by Enveloped Viruses , 2005, Journal of Virology.

[28]  J. Lineberger,et al.  Coupling of Human Immunodeficiency Virus Type 1 Fusion to Virion Maturation: a Novel Role of the gp41 Cytoplasmic Tail , 2004, Journal of Virology.

[29]  E. Freed,et al.  Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity , 2004, Journal of Virology.

[30]  Kenneth A. Taylor,et al.  Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Mak,et al.  Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity , 2002, AIDS.

[32]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[33]  J. Korlach,et al.  Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. , 1999, Cytometry.

[34]  C. Seidel,et al.  Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection:  Evidence of Two-Step Photolysis. , 1998, Analytical chemistry.

[35]  P. Cosson Direct interaction between the envelope and matrix proteins of HIV‐1. , 1996, The EMBO journal.

[36]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[37]  T. Wilk,et al.  Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. , 1992, Virology.

[38]  C. Barnstable,et al.  Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis , 1978, Cell.

[39]  C. Eggeling,et al.  Pathways to optical STED microscopy , 2014 .

[40]  F. Förster,et al.  The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. , 2006, Structure.