The Genome Architecture of the Collaborative Cross Mouse Genetic Reference Population

The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.

Lisa E. Gralinski | Robert W. Williams | David L. Aylor | Catherine E. Welsh | John P. Didion | T. A. Bell | Karlyne M. Reilly | Martin T. Ferris | B. Hallgrímsson | P. Sullivan | G. Weinstock | F. Collins | L. McMillan | E. Chesler | R. Mott | K. Svenson | C. Perou | G. Churchill | M. Katze | K. Schughart | F. Wright | Wei Wang | N. Crawford | Elizabeth Rosenzweig | B. Yalcin | W. Valdar | K. Broman | L. Aicher | Summer G. Goodson | Seunggeun Lee | W. Warren | L. Goodstadt | Chen-Ping Fu | F. P. Villena | T. Gooch | Darla R. Miller | J. Cleak | F. Iraqi | Mustafa Mahajne | Yasser Salaymah | Hani Sandovski | Hanna Tayem | K. Vered | L. Balmer | Michael Hall | G. Manship | G. Morahan | Ken Pettit | Jeremy Scholten | Kathryn Tweedie | A. Wallace | L. Weerasekera | C. Durrant | D. Aylor | R. Baric | K. M. Bendt | J. Brennan | Jackie D. Brooks | Ryan J. Buus | J. Crowley | John D. Calaway | Mark E Calaway | Agnieszka Cholka | David B. Darr | Amy Dorman | E. Everett | W. F. Mathes | Stephanie D Hansen | M. Heise | J. Hoel | K. Hua | Mayanga Kapita | A. Lenarcic | E. Y. Liu | Hedi Liu | T. Magnuson | K. Manly | D. A. O’Brien | F. Odet | I. K. Pakatci | W. Pan | D. Pomp | C. Quackenbush | Nashiya N Robinson | N. Sharpless | Ginger D. Shaw | Jason S. Spence | Wei Sun | L. Tarantino | Jeremy R. Wang | C. E. Welsh | A. Whitmore | T. Wiltshire | Yuying Xie | Zaining Yun | Vasyl Zhabotynsky | Zhaojun Zhang | F. Zou | Christine L. Powell | Jill Steigerwalt | D. Threadgill | D. Gatti | R. Korstanje | K. Hunter | N. Samir | P. Kelada | Bailey C. E. Peck | K. Reilly | Urraca Tavarez | D. Bottomly | Robert Hitzeman | S. McWeeney | J. Frelinger | Harsha Krovi | J. Phillippi | R. Spritz | A. Shusterman | A. Nashef | E. Weiss | Y. Houri-Haddad | M. Soller | Hyuna Yang | J. French | A. Benson | Jaehyoung Kim | Ryan M Legge | Soo Jen Low | Fangrui Ma | I. Martínez | J. Walter | O. Klein | Yvana V. Yang | D. Schwartz | Lauri D. Aicher | Corey R. Quackenbush | Elizabeth R. Rosenzweig | Nigel P. S. Crawford | K. Bendt | J. Spence | Y. Houri‐haddad | M. Ferris | James Cleak | Lakshini Y Weerasekera | Jason Phillippi | Alan B. Lenarcic | Aysar Nashef | Y. Houri‐Haddad

[1]  D. Bailey RECOMBINANT‐INBRED STRAINS AN AID TO FINDING IDENTITY, LINKAGE, AND FUNCTION OF HISTOCOMPATIBILITY AND OTHER GENES , 1971, Transplantation.

[2]  B. Taylor,et al.  Host-gene control of C-type RNA tumor virus: inheritance of the group-specific antigen of murine leukemia virus. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Steinberg,et al.  Studies of consomic mice bearing the Y chromosome of the BXSB mouse. , 1985, Journal of immunology.

[4]  R. Hudson,et al.  Statistical properties of the number of recombination events in the history of a sample of DNA sequences. , 1985, Genetics.

[5]  E. Lander,et al.  Analysing complex genetic traits with chromosome substitution strains , 2000, Nature Genetics.

[6]  A. C. Collins,et al.  A method for fine mapping quantitative trait loci in outbred animal stocks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Janan T. Eppig,et al.  A mouse phenome project , 2000, Mammalian Genome.

[8]  C. Sapienza,et al.  Nonrandom segregation during meiosis: the unfairness of females , 2001, Mammalian Genome.

[9]  Robert W. Williams,et al.  Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort , 2002, Mammalian Genome.

[10]  Robert W. Williams,et al.  WebQTL - Web-based complex trait analysis , 2003, Neuroinformatics.

[11]  A. Hart,et al.  Recombinant congenic strains — A new tool for analyzing genetic traits determined by more than one gene , 2004, Immunogenetics.

[12]  Lu Lu,et al.  WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior , 2004, Nature Neuroscience.

[13]  M. Nachman,et al.  DIFFERENTIAL PATTERNS OF INTROGRESSION ACROSS THE X CHROMOSOME IN A HYBRID ZONE BETWEEN TWO SPECIES OF HOUSE MICE , 2004, Evolution; international journal of organic evolution.

[14]  Nengjun Yi,et al.  The Collaborative Cross, a community resource for the genetic analysis of complex traits , 2004, Nature Genetics.

[15]  D. Threadgill Meeting report for the 4th Annual Complex Trait Consortium Meeting: From QTLs to Systems Genetics , 2006, Mammalian Genome.

[16]  K. Broman The Genomes of Recombinant Inbred Lines , 2004, Genetics.

[17]  William Valdar,et al.  Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice , 2006, Genetics.

[18]  Hyuna Yang,et al.  On the subspecific origin of the laboratory mouse , 2007, Nature Genetics.

[19]  G. Churchill,et al.  Evidence of a Large-Scale Functional Organization of Mammalian Chromosomes , 2005, PLoS biology.

[20]  J. Crow Haldane, Bailey, Taylor and recombinant-inbred lines. , 2007, Genetics.

[21]  F. Teuscher,et al.  Haplotype Probabilities for Multiple-Strain Recombinant Inbred Lines , 2007, Genetics.

[22]  Wei Wang,et al.  The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics , 2007, Mammalian Genome.

[23]  Elissa J. Chesler,et al.  The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics , 2008, Mammalian Genome.

[24]  L. Balmer,et al.  Establishment of “The Gene Mine”: a resource for rapid identification of complex trait genes , 2008, Mammalian Genome.

[25]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[26]  R. Mott,et al.  The Collaborative Cross, developing a resource for mammalian systems genetics: A status report of the Wellcome Trust cohort , 2008, Mammalian Genome.

[27]  R. Mott,et al.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana , 2009, PLoS genetics.

[28]  Qi Zhang,et al.  Inferring Genome-Wide Mosaic Structure , 2008, Pacific Symposium on Biocomputing.

[29]  E. Stone,et al.  Systems Genetics of Complex Traits in Drosophila melanogaster , 2009, Nature Genetics.

[30]  Peter J. Bradbury,et al.  The Genetic Architecture of Maize Flowering Time , 2009, Science.

[31]  Yueming Ding,et al.  A customized and versatile high-density genotyping array for the mouse , 2009, Nature Methods.

[32]  Broome,et al.  Literature cited , 1924, A Guide to the Carnivores of Central America.

[33]  Sarah L Burgess-Herbert,et al.  An experimental assessment of in silico haplotype association mapping in laboratory mice , 2009, BMC Genetics.

[34]  A. González-Neira,et al.  Mouse Genome-Wide Association Mapping Needs Linkage Analysis to Avoid False-Positive Loci , 2009, PLoS genetics.

[35]  Cestmir Vlcek,et al.  A Mouse Speciation Gene Encodes a Meiotic Histone H3 Methyltransferase , 2009, Science.

[36]  Eleazar Eskin,et al.  A high-resolution association mapping panel for the dissection of complex traits in mice. , 2010, Genome research.

[37]  T. A. Bell,et al.  Genetic mapping and developmental timing of transmission ratio distortion in a mouse interspecific backcross , 2010, BMC Genetics.

[38]  Qi Zhang,et al.  Genome-wide compatible SNP intervals and their properties , 2010, BCB '10.

[39]  Qi Zhang,et al.  Efficient genome ancestry inference in complex pedigrees with inbreeding , 2010, Bioinform..

[40]  Leonard McMillan,et al.  Dynamic visualization and comparative analysis of multiple collinear genomic data , 2011, BCB '11.

[41]  Catherine E. Welsh,et al.  Subspecific origin and haplotype diversity in the laboratory mouse , 2011, Nature Genetics.

[42]  David L. Aylor,et al.  Architecture of energy balance traits in emerging lines of the Collaborative Cross. , 2011, American journal of physiology. Endocrinology and metabolism.

[43]  Leopold Parts,et al.  Assessing the complex architecture of polygenic traits in diverged yeast populations , 2011, Molecular ecology.

[44]  Brynn H Voy,et al.  Genetic analysis in the Collaborative Cross breeding population. , 2011, Genome research.

[45]  David W Threadgill,et al.  The collaborative cross: a recombinant inbred mouse population for the systems genetic era. , 2011, ILAR journal.

[46]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[47]  Ivana V. Yang,et al.  Genetic analysis of complex traits in the emerging Collaborative Cross. , 2011, Genome research.

[48]  B. Payseur,et al.  Genetic Dissection of a Key Reproductive Barrier Between Nascent Species of House Mice , 2011, Genetics.

[49]  Thomas M. Keane,et al.  Sequence-based characterization of structural variation in the mouse genome , 2011, Nature.

[50]  R. Mott,et al.  Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. , 2011, Genome research.

[51]  Leonard McMillan,et al.  Imputation of Single-Nucleotide Polymorphisms in Inbred Mice Using Local Phylogeny , 2012, Genetics.

[52]  Leonard McMillan,et al.  Accelerating the Inbreeding of Multi-Parental Recombinant Inbred Lines Generated By Sibling Matings , 2012, G3: Genes | Genomes | Genetics.

[53]  K. Svenson,et al.  A General Bayesian Approach to Analyzing Diallel Crosses of Inbred Strains , 2012, Genetics.

[54]  Wei Wang,et al.  HTreeQA: Using Semi-Perfect Phylogeny Trees in Quantitative Trait Loci Study on Genotype Data , 2012, G3: Genes | Genomes | Genetics.

[55]  Wei Sun,et al.  Transcriptome Atlases of Mouse Brain Reveals Differential Expression Across Brain Regions and Genetic Backgrounds , 2012, G3: Genes | Genomes | Genetics.

[56]  Elissa J. Chesler,et al.  Genetic Analysis of Hematological Parameters in Incipient Lines of the Collaborative Cross , 2012, G3: Genes | Genomes | Genetics.

[57]  Fei Zou,et al.  Varying Coefficient Models for Mapping Quantitative Trait Loci Using Recombinant Inbred Intercrosses , 2012, Genetics.

[58]  Karl W. Broman,et al.  Haplotype Probabilities in Advanced Intercross Populations , 2012, G3: Genes | Genomes | Genetics.

[59]  Leonard McMillan,et al.  High-Resolution Genetic Mapping Using the Mouse Diversity Outbred Population , 2012, Genetics.

[60]  Karl W. Broman,et al.  Genotype Probabilities at Intermediate Generations in the Construction of Recombinant Inbred Lines , 2012, Genetics.

[61]  F. Zou,et al.  Varying Coef fi cient Models for Mapping Quantitative Trait Loci Using Recombinant Inbred , 2012 .