Fatigue crack initiation and propagation behaviors of solution-treated and air-cooled Cu-6Ni-1.5Si alloy strengthened by precipitation hardening
暂无分享,去创建一个
M. Goto | Je-hyun Lee | J. Ahn | S. H. Lim | S. Kim | Takaei Yamamoto | Seung-Zeon Han | J. Kitamura | T. Iwamura
[1] L. Wagner,et al. Influence of grain size and precipitation hardening on high cycle fatigue performance of CuNiSi alloys , 2017 .
[2] Je-hyun Lee,et al. Optimization of conductivity and strength in Cu-Ni-Si alloys by suppressing discontinuous precipitation , 2016, Metals and Materials International.
[3] M. Goto,et al. Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu–Ni–Si alloy , 2016 .
[4] M. Goto,et al. Increasing toughness by promoting discontinuous precipitation in Cu–Ni–Si alloys , 2016 .
[5] S. Semboshi,et al. Discontinuous precipitates in age-hardening CuNiSi alloys , 2016 .
[6] Zhou Li,et al. Phase transformation behavior of Cu–10Ni–3Al–0.8Si alloy , 2016 .
[7] S. Zhong,et al. Fatigue crack initiation and early propagation behavior of 2A97 Al–Li alloy , 2014 .
[8] C. Beevers,et al. The Initiation and Growth of Intergranularly Initiated Short fatigue Cracks in an Aluminium 4.5 per cent Copper Alloy , 2013 .
[9] Sangshik Kim,et al. Tensile and electrical properties of direct aged Cu-Ni-Si-x%Ti alloys , 2013, Metals and Materials International.
[10] Jingping Liu,et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys , 2013 .
[11] M. Goto,et al. Statistical description of the effect of Zr addition on the behavior of microcracks in Cu–6Ni–2Mn–2Sn–2Al Alloy , 2012, Journal of Materials Science.
[12] Zhidan Sun,et al. Dynamic embrittlement during fatigue of a Cu–Ni–Si alloy , 2011 .
[13] Q. Lei,et al. Phase transformations behavior in a Cu–8.0Ni–1.8Si alloy , 2011 .
[14] S. Onaka,et al. Cyclic Softening of Cu-Ni-Si Alloy Single Crystals under Low-Cycle Fatigue , 2010 .
[15] C. Watanabe,et al. Microstructure and mechanical properties of Cu–Ni–Si alloys , 2008 .
[16] Y. Waseda,et al. Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling , 2006 .
[17] V. Uhlenwinkel,et al. Effect of thermomechanical treatment on spray formed Cu – Ni – Si alloy , 2004 .
[18] D. Laughlin,et al. High-strength age hardening copper–titanium alloys: redivivus , 2004 .
[19] J. Huang,et al. Structure and strength of the age hardened Cu–Ni–Si alloy , 2003 .
[20] S. Lockyer,et al. Fatigue of precipitate strengthened Cu–Ni–Si alloy , 1999 .
[21] M. Goto,et al. INITIATION AND PROPAGATION BEHAVIOUR OF MICROCRACKS IN NI-BASE SUPERALLOY UDIMET 720 LI , 1998 .
[22] 英道 藤原,et al. Cu-Ni-Si系合金中の析出挙動に及ぼす合金組成の影響 , 1998 .
[23] M. Goto,et al. Fatigue Behavior of 6061-T6 Aluminum Alloy Plain Specimens , 1997 .
[24] M. Goto. STATISTICAL INVESTIGATION OF THE BEHAVIOUR OF SMALL CRACKS AND FATIGUE LIFE IN CARBON STEELS WITH DIFFERENT FERRITE GRAIN SIZES , 1994 .
[25] S. Lockyer,et al. Precipitate structure in a Cu-Ni-Si alloy , 1994 .
[26] R. Ritchie,et al. Fatigue of aluminium—lithium alloys , 1992 .
[27] M. Goto. STATISTICAL INVESTIGATION OF THE BEHAVIOUR OF MICROCRACKS IN CARBON STEELS , 1991 .
[28] M. Fine,et al. Fatigue Crack Initiation and Microcrack Propagation in X7091 Type Aluminum P/M Alloys , 1983 .
[29] Nisitani Hironobu,et al. Significance of initiation, propagation and closure of microcracks in high cycle fatigue of ductile metals , 1981 .