Fatigue crack initiation and propagation behaviors of solution-treated and air-cooled Cu-6Ni-1.5Si alloy strengthened by precipitation hardening

[1]  L. Wagner,et al.  Influence of grain size and precipitation hardening on high cycle fatigue performance of CuNiSi alloys , 2017 .

[2]  Je-hyun Lee,et al.  Optimization of conductivity and strength in Cu-Ni-Si alloys by suppressing discontinuous precipitation , 2016, Metals and Materials International.

[3]  M. Goto,et al.  Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu–Ni–Si alloy , 2016 .

[4]  M. Goto,et al.  Increasing toughness by promoting discontinuous precipitation in Cu–Ni–Si alloys , 2016 .

[5]  S. Semboshi,et al.  Discontinuous precipitates in age-hardening CuNiSi alloys , 2016 .

[6]  Zhou Li,et al.  Phase transformation behavior of Cu–10Ni–3Al–0.8Si alloy , 2016 .

[7]  S. Zhong,et al.  Fatigue crack initiation and early propagation behavior of 2A97 Al–Li alloy , 2014 .

[8]  C. Beevers,et al.  The Initiation and Growth of Intergranularly Initiated Short fatigue Cracks in an Aluminium 4.5 per cent Copper Alloy , 2013 .

[9]  Sangshik Kim,et al.  Tensile and electrical properties of direct aged Cu-Ni-Si-x%Ti alloys , 2013, Metals and Materials International.

[10]  Jingping Liu,et al.  The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys , 2013 .

[11]  M. Goto,et al.  Statistical description of the effect of Zr addition on the behavior of microcracks in Cu–6Ni–2Mn–2Sn–2Al Alloy , 2012, Journal of Materials Science.

[12]  Zhidan Sun,et al.  Dynamic embrittlement during fatigue of a Cu–Ni–Si alloy , 2011 .

[13]  Q. Lei,et al.  Phase transformations behavior in a Cu–8.0Ni–1.8Si alloy , 2011 .

[14]  S. Onaka,et al.  Cyclic Softening of Cu-Ni-Si Alloy Single Crystals under Low-Cycle Fatigue , 2010 .

[15]  C. Watanabe,et al.  Microstructure and mechanical properties of Cu–Ni–Si alloys , 2008 .

[16]  Y. Waseda,et al.  Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling , 2006 .

[17]  V. Uhlenwinkel,et al.  Effect of thermomechanical treatment on spray formed Cu – Ni – Si alloy , 2004 .

[18]  D. Laughlin,et al.  High-strength age hardening copper–titanium alloys: redivivus , 2004 .

[19]  J. Huang,et al.  Structure and strength of the age hardened Cu–Ni–Si alloy , 2003 .

[20]  S. Lockyer,et al.  Fatigue of precipitate strengthened Cu–Ni–Si alloy , 1999 .

[21]  M. Goto,et al.  INITIATION AND PROPAGATION BEHAVIOUR OF MICROCRACKS IN NI-BASE SUPERALLOY UDIMET 720 LI , 1998 .

[22]  英道 藤原,et al.  Cu-Ni-Si系合金中の析出挙動に及ぼす合金組成の影響 , 1998 .

[23]  M. Goto,et al.  Fatigue Behavior of 6061-T6 Aluminum Alloy Plain Specimens , 1997 .

[24]  M. Goto STATISTICAL INVESTIGATION OF THE BEHAVIOUR OF SMALL CRACKS AND FATIGUE LIFE IN CARBON STEELS WITH DIFFERENT FERRITE GRAIN SIZES , 1994 .

[25]  S. Lockyer,et al.  Precipitate structure in a Cu-Ni-Si alloy , 1994 .

[26]  R. Ritchie,et al.  Fatigue of aluminium—lithium alloys , 1992 .

[27]  M. Goto STATISTICAL INVESTIGATION OF THE BEHAVIOUR OF MICROCRACKS IN CARBON STEELS , 1991 .

[28]  M. Fine,et al.  Fatigue Crack Initiation and Microcrack Propagation in X7091 Type Aluminum P/M Alloys , 1983 .

[29]  Nisitani Hironobu,et al.  Significance of initiation, propagation and closure of microcracks in high cycle fatigue of ductile metals , 1981 .