Turbulence transition in pipe flow

Pipe flow is a prominent example among the shear flows that undergo transition to turbulence without mediation by a linear instability of the laminar profile. Experiments on pipe flow, as well as plane Couette and plane Poiseuille flow, show that triggering turbulence depends sensitively on initial conditions, that between the laminar and the turbulent states there exists no intermediate state with simple spatial or temporal characteristics, and that turbulence is not persistent, i.e., it can decay again, if the observation time is long enough. All these features can consistently be explained on the assumption that the turbulent state corresponds to a chaotic saddle in state space. The goal of this review is to explain this concept, summarize the numerical and experimental evidence for pipe flow, and outline the consequences for related flows.

[1]  Kunihiko Kaneko,et al.  Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos , 1990 .

[2]  Fabian Waleffe,et al.  Transition in shear flows. Nonlinear normality versus non‐normal linearity , 1995 .

[3]  U. Brosa Turbulence without strange attractor , 1989 .

[4]  G. Hagen,et al.  Ueber die Bewegung des Wassers in engen cylindrischen Röhren , 1839 .

[5]  Tomoaki Itano,et al.  Interaction between a large-scale structure and near-wall structures in channel flow , 2005, Journal of Fluid Mechanics.

[6]  Uwe Ehrenstein,et al.  Three-dimensional wavelike equilibrium states in plane Poiseuille flow , 1991, Journal of Fluid Mechanics.

[7]  P. Manneville,et al.  Discontinuous transition to spatiotemporal intermittency in plane Couette flow , 1998 .

[8]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[9]  L. J. Campbell,et al.  Point vortex dynamics: recent results and open problems , 1987 .

[10]  I. Wygnanski,et al.  On transition in a pipe. Part 2. The equilibrium puff , 1975, Journal of Fluid Mechanics.

[11]  Osborne Reynolds,et al.  XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Philosophical Transactions of the Royal Society of London.

[12]  Mohamed Gad-el-Hak,et al.  Coherent structures in a turbulent boundary layer. Part 1: Generation of ‘‘artificial’’ bursts , 1986 .

[13]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[14]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  Crutchfield,et al.  Are attractors relevant to turbulence? , 1988, Physical review letters.

[16]  IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions , 2005 .

[17]  F. Daviaud,et al.  Finite-Amplitude Perturbation in Plane Couette Flow , 1994 .

[18]  B. Eckhardt,et al.  Evolution of turbulent spots in a parallel shear flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[20]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[21]  Daviaud,et al.  Subcritical transition to turbulence in plane Couette flow. , 1992, Physical review letters.

[22]  Finite-amplitude equilibrium states in plane Couette flow , 1997 .

[23]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[24]  P. Schmid,et al.  Optimal energy density growth in Hagen–Poiseuille flow , 1994, Journal of Fluid Mechanics.

[25]  S. Grossmann The onset of shear flow turbulence , 2000 .

[26]  D. Henningson Comment on ‘‘Transition in shear flows. Nonlinear normality versus non‐normal linearity’’ [Phys. Fluids 7, 3060 (1995)] , 1996 .

[27]  I. Wygnanski,et al.  On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug , 1973, Journal of Fluid Mechanics.

[28]  L. Kadanoff,et al.  Escape from strange repellers. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Eckhardt,et al.  Fractal Stability Border in Plane Couette Flow , 1997, chao-dyn/9704018.

[30]  Jeff Moehlis,et al.  A low-dimensional model for turbulent shear flows , 2004 .

[31]  T. Mullin,et al.  RECENT OBSERVATIONS OF THE TRANSITION TO TURBULENCE IN A PIPE , 2006 .

[32]  J. Westerweel,et al.  Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow , 2004, Science.

[33]  Bruno Eckhardt,et al.  Local Lyapunov exponents in chaotic systems , 1993 .

[34]  H. Aref,et al.  Integrable and chaotic motions of four vortices II. Collision dynamics of vortex pairs , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  T. Mullin,et al.  Transition to turbulence in constant-mass-flux pipe flow , 1995, Journal of Fluid Mechanics.

[36]  L. Trefethen,et al.  Linearized pipe flow to Reynolds number 10 7 , 2003 .

[37]  B. Eckhardt,et al.  Sensitive dependence on initial conditions in transition to turbulence in pipe flow , 2003, Journal of Fluid Mechanics.

[38]  M. Nagata,et al.  Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity , 1990, Journal of Fluid Mechanics.

[39]  H. Wedin,et al.  Exact coherent structures in pipe flow: travelling wave solutions , 2003, Journal of Fluid Mechanics.

[40]  S. Jonathan Chapman,et al.  Subcritical transition in channel flows , 2002, Journal of Fluid Mechanics.

[41]  H. Chaté,et al.  Statistical analysis of the transition to turbulence in plane Couette flow , 1998 .

[42]  O. Lanford The Strange Attractor Theory of Turbulence , 1982 .

[43]  Genta Kawahara,et al.  Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst , 2001, Journal of Fluid Mechanics.

[44]  T Mullin,et al.  Decay of turbulence in pipe flow. , 2006, Physical review letters.

[45]  T. Mullin,et al.  Scaling of the turbulence transition threshold in a pipe. , 2003, Physical review letters.

[46]  F. Nieuwstadt,et al.  Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids , 1998, Journal of Fluid Mechanics.

[47]  B. Eckhardt,et al.  Transition from the Couette-Taylor system to the plane Couette system. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  F. Busse,et al.  Tertiary and quaternary solutions for plane Couette flow , 1997, Journal of Fluid Mechanics.

[49]  R. Kerswell,et al.  Recent progress in understanding the transition to turbulence in a pipe , 2005 .

[50]  J. Yorke,et al.  Edge of chaos in a parallel shear flow. , 2006, Physical review letters.

[51]  H. Chaté,et al.  Large-scale finite-wavelength modulation within turbulent shear flows. , 2002, Physical review letters.

[52]  Charles R. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[53]  F. Waleffe Exact coherent structures in channel flow , 2001, Journal of Fluid Mechanics.

[54]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[55]  B. Eckhardt,et al.  Traveling waves in pipe flow. , 2003, Physical review letters.

[56]  Tomoaki Itano,et al.  A periodic-like solution in channel flow , 2003, Journal of Fluid Mechanics.

[57]  C. Grosch,et al.  Linear stability of Poiseuille flow in a circular pipe , 1980, Journal of Fluid Mechanics.

[58]  Dwight Barkley,et al.  Computational study of turbulent laminar patterns in couette flow. , 2005, Physical review letters.

[59]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.

[60]  Ronald L. Panton,et al.  Overview of the self-sustaining mechanisms of wall turbulence , 2001 .

[61]  Tomoaki Itano,et al.  The Dynamics of Bursting Process in Wall Turbulence , 2001 .

[62]  John Guckenheimer,et al.  Strange Attractors in Fluids: Another View , 1986 .

[63]  Fabian Waleffe,et al.  THREE-DIMENSIONAL COHERENT STATES IN PLANE SHEAR FLOWS , 1998 .

[64]  J. Westerweel,et al.  Finite lifetime of turbulence in shear flows , 2006, Nature.

[65]  John Kim,et al.  Regeneration mechanisms of near-wall turbulence structures , 1995, Journal of Fluid Mechanics.

[66]  O. Zikanov On the instability of pipe Poiseuille flow , 1996 .

[67]  F. Waleffe Homotopy of exact coherent structures in plane shear flows , 2003 .

[68]  H. Aref INTEGRABLE, CHAOTIC, AND TURBULENT VORTEX MOTION IN TWO-DIMENSIONAL FLOWS , 1983 .

[69]  F. Daviaud,et al.  Finite amplitude perturbation and spots growth mechanism in plane Couette flow , 1995 .

[70]  Jerry Westerweel,et al.  Turbulence regeneration in pipe flow at moderate Reynolds numbers. , 2005, Physical review letters.

[71]  P. Cvitanović,et al.  Spatiotemporal chaos in terms of unstable recurrent patterns , 1996, chao-dyn/9606016.

[72]  D. Coles Coherent Structures in Turbulent Boundary Layers , 1987 .

[73]  B. Hof Transition to Turbulence in Pipe Flow , 2022, Annual Review of Fluid Mechanics.

[74]  Bruno Eckhardt,et al.  Periodic orbit analysis of the Lorenz attractor , 1994 .

[75]  P. Schmid,et al.  Stability and Transition in Shear Flows. Applied Mathematical Sciences, Vol. 142 , 2002 .

[76]  Friedrich H. Busse,et al.  Three-dimensional convection in a horizontal fluid layer subjected to a constant shear , 1992, Journal of Fluid Mechanics.

[77]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[78]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[79]  L. Böberg,et al.  Onset of Turbulence in a Pipe , 1988 .

[80]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.