High-dimensional cryptography with spatial modes of light: tutorial

Fast and secure sharing of information is among the prime concerns of almost any communication system. While commonly used cryptographic algorithms cannot provide unconditional security, high-dimensional (HD) quantum key distribution (QKD) offers an exceptional means to this end. Here, we provide a tutorial to demonstrate that HD QKD protocols can be implemented in an effective way using optical elements that are known to most optics labs. We use spatial modes of light as our HD basis and show how to simulate QKD experiments with bright classical light, fostering its easy implementation for a more general audience including industry laboratories or laboratory classes in university teaching and in advanced laboratories for validation purposes. In particular, we use orbital angular momentum Bessel–Gaussian modes for our HD QKD demonstration to illustrate and highlight the benefits of using spatial modes as their natural Schmidt basis and self-healing feature.

[1]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[2]  Robert W Boyd,et al.  Sorting Photons by Radial Quantum Number. , 2017, Physical review letters.

[3]  Andrew Forbes,et al.  Simulating quantum state engineering in spontaneous parametric down-conversion using classical light. , 2014, Optics express.

[4]  D. Klyshko,et al.  METHODOLOGICAL NOTES: A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle , 1988 .

[5]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[6]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[7]  Francesco Petruccione,et al.  Realizing long-term quantum cryptography , 2010 .

[8]  Robert Fickler,et al.  Quantum cryptography with twisted photons through an outdoor underwater channel. , 2018, Optics express.

[9]  Xiongfeng Ma,et al.  Secure quantum key distribution with realistic devices , 2020 .

[10]  Gustavo Lima,et al.  Quantum information processing with space-division multiplexing optical fibres , 2019, Communications Physics.

[11]  G. Guo,et al.  Characterizing High-Quality High-Dimensional Quantum Key Distribution by State Mapping Between Different Degrees of Freedom , 2018, Physical Review Applied.

[12]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[13]  Miles J Padgett,et al.  Orbital angular momentum 25 years on [Invited]. , 2017, Optics express.

[14]  F. Bussières,et al.  Secure Quantum Key Distribution over 421 km of Optical Fiber. , 2018, Physical review letters.

[15]  Fibirova Jana,et al.  Profit-Sharing – A Tool for Improving Productivity, Profitability and Competitiveness of Firms? , 2013 .

[16]  Robert Fickler,et al.  Full-field mode sorter using two optimized phase transformations for high-dimensional quantum cryptography , 2019, Journal of Optics.

[17]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[18]  Mark Beck,et al.  Quantum optics experiments with single photons for undergraduate laboratories , 2007, International Topical Meeting on Education and Training in Optics and Photonics.

[19]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[20]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[21]  S. Etcheverry,et al.  Quantum key distribution session with 16-dimensional photonic states , 2013, Scientific Reports.

[22]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  C. Denz,et al.  Self-healing quantum key distribution using high-dimensional vector modes , 2018 .

[24]  Bienvenu Ndagano,et al.  Classically Entangled Light , 2019, Progress in Optics.

[25]  Leif Katsuo Oxenløwe,et al.  Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication , 2018, Physical Review Applied.

[26]  Isaac Nape,et al.  Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication , 2017, Journal of Lightwave Technology.

[27]  Robert Fickler,et al.  Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons , 2018, Quantum.

[28]  Brett J. Pearson,et al.  A hands-on introduction to single photons and quantum mechanics for undergraduates , 2010 .

[29]  Robert Fickler,et al.  Overcoming Noise in Entanglement Distribution. , 2019 .

[30]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[31]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[32]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[33]  M. Beck,et al.  Exploring entanglement with the help of quantum state measurement , 2014 .

[34]  E. Galvez Resource Letter SPE-1: Single-Photon Experiments in the Undergraduate Laboratory , 2014 .

[35]  A. Forbes,et al.  A review of complex vector light fields and their applications , 2018, Journal of Optics.

[36]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[37]  C. Denz,et al.  Recovery of nonseparability in self-healing vector Bessel beams , 2018, Physical Review A.

[38]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[39]  Gunnar Friege,et al.  Undergraduate quantum optics: experimental steps to quantum physics , 2018, European Journal of Physics.

[40]  Enrique J. Galvez,et al.  Qubit quantum mechanics with correlated-photon experiments , 2010 .

[41]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[42]  Andrew Forbes,et al.  A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams , 2018, Scientific Reports.

[43]  M. Dušek,et al.  Chapter 5 - Quantum cryptography , 2006, quant-ph/0601207.

[44]  Tao Wang,et al.  Field demonstration of a continuous-variable quantum key distribution network. , 2016, Optics letters.

[45]  F. S. Roux,et al.  Diffraction-induced entanglement loss of orbital-angular-momentum states , 2017, 1710.10917.

[46]  Z. Bouchal,et al.  Self-reconstruction of a distorted nondiffracting beam , 1998 .

[47]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[48]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[49]  Norbert Lutkenhaus,et al.  Symmetries in Quantum Key Distribution and the Connection between Optimal Attacks and Optimal Cloning , 2011, 1112.3396.

[50]  R. Boyd,et al.  High-dimensional intracity quantum cryptography with structured photons , 2016, 1612.05195.

[51]  Andrew Forbes,et al.  Quantum mechanics and classical light , 2019, Contemporary Physics.

[52]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[53]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[54]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[55]  Gilles Brassard,et al.  Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working] , 1989, SIGACT News.

[56]  Johannes Courtial,et al.  Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states , 2013 .

[57]  Isaac Nape,et al.  Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light , 2019 .

[58]  Zhi-Qiang Jiao,et al.  Underwater transmission of high-dimensional twisted photons over 55 meters , 2019, 1902.01392.

[59]  Jeffrey A. Davis,et al.  Nondiffracting random intensity patterns. , 2006, Optics letters.

[60]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[61]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[62]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[63]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[64]  G. Walsh Pancharatnam-Berry optical element sorter of full angular momentum eigenstate. , 2016, Optics express.

[65]  M. Beck,et al.  Witnessing entanglement in an undergraduate laboratory , 2016 .

[66]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[67]  D. Neilson,et al.  Laguerre-Gaussian mode sorter , 2018, Nature Communications.

[68]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[69]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[70]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[71]  A. Friberg,et al.  Holographic generation of diffraction-free beams. , 1988, Applied optics.

[72]  A. Forbes,et al.  Characterization and mitigation of information loss in a six-state quantum-key-distribution protocol with spatial modes of light through turbulence , 2018, Physical Review A.

[73]  M. Padgett,et al.  Self-healing of quantum entanglement after an obstruction , 2014, Nature Communications.

[74]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[75]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[76]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[77]  Daniel J Gauthier,et al.  Provably secure and high-rate quantum key distribution with time-bin qudits , 2017, Science Advances.

[78]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[79]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[80]  Isaac Nape,et al.  Concepts in quantum state tomography and classical implementation with intense light: a tutorial , 2019, Advances in Optics and Photonics.

[81]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[82]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[83]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[84]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[85]  Isaac Nape,et al.  A deterministic detector for vector vortex states , 2017, Scientific Reports.

[86]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.