Investigating population heterogeneity with factor mixture models.

Sources of population heterogeneity may or may not be observed. If the sources of heterogeneity are observed (e.g., gender), the sample can be split into groups and the data analyzed with methods for multiple groups. If the sources of population heterogeneity are unobserved, the data can be analyzed with latent class models. Factor mixture models are a combination of latent class and common factor models and can be used to explore unobserved population heterogeneity. Observed sources of heterogeneity can be included as covariates. The different ways to incorporate covariates correspond to different conceptual interpretations. These are discussed in detail. Characteristics of factor mixture modeling are described in comparison to other methods designed for data stemming from heterogeneous populations. A step-by-step analysis of a subset of data from the Longitudinal Survey of American Youth illustrates how factor mixture models can be applied in an exploratory fashion to data collected at a single time point.

[1]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[2]  K. Pearson Contributions to the Mathematical Theory of Evolution , 1894 .

[3]  K. Pearson Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .

[4]  R. C. Durfee,et al.  MULTIPLE FACTOR ANALYSIS. , 1967 .

[5]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  D. Sörbom A GENERAL METHOD FOR STUDYING DIFFERENCES IN FACTOR MEANS AND FACTOR STRUCTURE BETWEEN GROUPS , 1974 .

[8]  F. Krauss Latent Structure Analysis , 1980 .

[9]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[10]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[11]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[12]  Gideon J. Mellenbergh,et al.  Item bias and item response theory , 1989 .

[13]  B. Byrne,et al.  Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. , 1989 .

[14]  T. C. Luijben,et al.  Equivalent models in covariance structure analysis , 1991 .

[15]  P. Meehl Factors and Taxa, Traits and Types, Differences of Degree and Differences in Kind , 1992 .

[16]  W. Meredith Measurement invariance, factor analysis and factorial invariance , 1993 .

[17]  D. Wegener,et al.  The problem of equivalent models in applications of covariance structure analysis. , 1993, Psychological bulletin.

[18]  J. Stevens,et al.  Applied Multivariate Statistics for the Social Sciences , 1993 .

[19]  Clifford C. Clogg,et al.  Latent Variables Analysis: Applications for Developmental Research. , 1995 .

[20]  Alexander von Eye,et al.  Latent Variables Analysis: Applications for Developmental Research. , 1995 .

[21]  Yiu-Fai Yung,et al.  Finite mixtures in confirmatory factor-analysis models , 1997 .

[22]  W. DeSarbo,et al.  Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity , 1997 .

[23]  T. Little Mean and Covariance Structures (MACS) Analyses of Cross-Cultural Data: Practical and Theoretical Issues. , 1997, Multivariate behavioral research.

[24]  Michael Windle,et al.  The science of prevention: methodological advances from alcohol and substance abuse research. , 1997 .

[25]  S. Reise,et al.  Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. , 1997 .

[26]  Kamel Jedidi,et al.  STEMM: A General Finite Mixture Structural Equation Model , 1997 .

[27]  Paul E. Meehl,et al.  Multivariate Taxometric Procedures: Distinguishing Types from Continua , 1997 .

[28]  Han L. J. van der Maas,et al.  Fitting multivariage normal finite mixtures subject to structural equation modeling , 1998 .

[29]  Richard Goldstein Latent Class and Discrete Latent Trait Models: Similarities and Differences , 1998 .

[30]  John S. Uebersax,et al.  Probit Latent Class Analysis with Dichotomous or Ordered Category Measures: Conditional Independence/Dependence Models , 1999 .

[31]  R. MacCallum,et al.  Sample size in factor analysis. , 1999 .

[32]  B. Muthén,et al.  Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm , 1999, Biometrics.

[33]  Gerhard Arminger,et al.  Mixtures of conditional mean- and covariance-structure models , 1999 .

[34]  Daniel S. Nagin,et al.  Analyzing developmental trajectories: A semiparametric, group-based approach , 1999 .

[35]  B. Muthén,et al.  Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. , 2000, Alcoholism, clinical and experimental research.

[36]  D. Rubin,et al.  Testing the number of components in a normal mixture , 2001 .

[37]  G. A. Marcoulides,et al.  New developments and techniques in structural equation modeling , 2001 .

[38]  Gregory R. Hancock,et al.  An Illustration of Second-Order Latent Growth Models , 2001 .

[39]  B. Muthén Latent Variable Mixture Modeling , 2001 .

[40]  George A. Marcoulides,et al.  Can There Be Infinitely Many Models Equivalent to a Given Covariance Structure Model? , 2001 .

[41]  Jay Magidson,et al.  Latent class models for clustering : a comparison with K-means , 2002 .

[42]  J. Vermunt,et al.  Latent class cluster analysis , 2002 .

[43]  J. Hagenaars,et al.  Applied Latent Class Analysis , 2003 .

[44]  Gitta H. Lubke,et al.  On the relationship between sources of within- and between-group differences and measurement invariance in the common factor model , 2003 .

[45]  Daniel J Bauer,et al.  Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. , 2003, Psychological methods.

[46]  G. Lubke,et al.  Can Unequal Residual Variances Across Groups Mask Differences in Residual Means in the Common Factor Model? , 2003 .

[47]  D. Rindskopf Mixture or homogeneous? Comment on Bauer and Curran (2003). , 2003, Psychological methods.

[48]  Daniel J. Bauer,et al.  Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthén (2003), and Cudeck and Henly (2003) , 2003 .

[49]  R. Cudeck,et al.  A realistic perspective on pattern representation in growth data: comment on Bauer and Curran (2003). , 2003, Psychological methods.

[50]  Bengt Muthén,et al.  Statistical and substantive checking in growth mixture modeling: comment on Bauer and Curran (2003). , 2003, Psychological methods.

[51]  R. Gonzalez Applied Multivariate Statistics for the Social Sciences , 2003 .

[52]  J. Vermunt Latent Class Models , 2004 .

[53]  David Kaplan,et al.  The Sage handbook of quantitative methodology for the social sciences , 2004 .

[54]  Bengt Muthén,et al.  Latent Variable Analysis: Growth Mixture Modeling and Related Techniques for Longitudinal Data , 2004 .

[55]  Verena D. Schmittmann,et al.  Regime Switching in the Latent Growth Curve Mixture Model , 2005 .

[56]  J. Vermunt,et al.  Latent Gold 4.0 User's Guide , 2005 .

[57]  Neil Henry Latent structure analysis , 1969 .

[58]  K. G. J8reskoC,et al.  Simultaneous Factor Analysis in Several Populations , 2007 .