Evaluation of the Koutecký-Koryta approximation for voltammetric currents generated by metal complex systems with various labilities

Abstract The voltammetric response of metal complex systems with various labilities is analyzed by rigorous numerical simulation with the Finite Element Method of the time-dependent concentration profiles of the different species. The ensuing exact fluxes and the corresponding currents are compared to those derived from the Koutecký–Koryta (KK) approximation which assumes a discontinuous transition in the concentration profiles from non-labile to labile behavior. The results indicate a relatively far-reaching correctness of the KK approximation in the complete kinetic range from non-labile to labile complexes, as long as the kinetic flux is computed from the effective concentration of the complex in the reaction layer. Some approximate analytical expressions for this concentration are provided. The KK approximation is shown to be applicable for any metal-to-ligand ratio, provided that the thickness of the reaction layer is expressed in terms of the ligand concentration at the electrode surface.

[1]  J. Koutecký,et al.  Fundamental equation for the electrolytic current when depending on the formation rate of the depolariser jointly with diffusion and its polarographic verification , 1947 .

[2]  R. Brdička,et al.  Polarographic determination of the rate of the reaction between ferrohem and hydrogen peroxide , 1947 .

[3]  D. Turner,et al.  Metal speciation and bioavailability in aquatic systems , 1995 .

[4]  M. Esteban,et al.  Voltammetry of labile metal-macromolecular systems for any ligand-to-metal ratio, including adsorption phenomena. The role of the stability constant , 1994 .

[5]  A. Hubin,et al.  Quasi-one-dimensional steady-state analysis of multi-ion electrochemical systems at a rotating disc electrode controlled by diffusion, migration, convection and homogeneous reactions , 1995 .

[6]  J. Z. Zhu,et al.  The finite element method , 1977 .

[7]  J. Buffle,et al.  Chemical and Biological Regulation of Aquatic Systems , 1994 .

[8]  D. R. Crow Polarography of metal complexes , 1969 .

[9]  William H. Press,et al.  Numerical recipes , 1990 .

[10]  J. Buffle,et al.  Voltammetric techniques for complexation measurements in natural aquatic media: Role of the size of macromolecular ligands and dissociation kinetics of complexes , 1989 .

[11]  M. Lovrić,et al.  Extension of an analytical solution for polarographic current influenced by first-order coupled chemical reaction , 1983 .

[12]  H. P. Leeuwen,et al.  Voltammetry of metal complex systems with different diffusion coefficients of the species involved. II. Behaviour of the limiting current and its dependence. , 1987 .

[13]  K. B. Oldham Steady-state microelectrode voltammetry as a route to homogeneous kinetics , 1991 .

[14]  D. Turner,et al.  The reversible electrodeposition of trace metal ions from multi-ligand systems: Part II. Calculations on the electrochemical availability of lead at trace levels in seawater , 1979 .

[15]  J. Heyrovský Principles of polarography , 1966 .

[16]  J. Koutecký Über die kinetik der elektrodenvorgänge XI. Polarographischer strom eines elektrodenvorganges mit vorgeschalteter chemischer reaktion, an welcher sich stoffe mit verschiedenen diffusionskoeffizienten beteiligen , 1954 .

[17]  H. P. Leeuwen Revisited: The Conception of Lability of Metal Complexes , 2001 .

[18]  J. Koutecký Theorie Langsamer elektrodenreaktionen in der polarographie und polarographisches verhalten eines systems, bei welchem der depolarisator durch eine schnelle chemische reaktion aus einem elektroinaktiven stoff entsteht , 1953 .

[19]  F. Mas,et al.  Voltammetric currents for any ligand-to-metal concentration ratio in fully labile metal-macromolecular complexation. Easy computations, analytical properties of the currents and a graphical method to estimate the stability constant , 1999 .

[20]  H. P. Leeuwen Kinetic classification of metal complexes in electroanalytical speciation , 1979 .

[21]  A. Bond,et al.  Principles of electrochemistry , 1987 .

[22]  T. Florence,et al.  Electrochemical approaches to trace element speciation in waters , 1986 .

[23]  P. Bartlett,et al.  Modelling the steady-state current at the inlaid disc microelectrode for homogeneous mediated enzyme catalysed reactions , 2001 .

[24]  H. P. van Leeuwen,et al.  Voltammetry of metal complex systems with different diffusion coefficients of the species involved. I. Analytical approaches to the limiting current. , 1987 .

[25]  J. Koutecký,et al.  The general theory of polarographic kinetic currents , 1961 .

[26]  J. Galceran,et al.  Voltammetric lability of metal complexes at spherical microelectrodes with various radii. , 2001 .

[27]  W. Davison Defining the electroanalytically measured species in a natural water sample , 1978 .

[28]  R. Brdička,et al.  Rate of recombination of ions derived from polarographic limiting currents due to the reduction of acids , 1947 .