Exaptation of transposable element coding sequences.

[1]  Gustavo Isaza,et al.  Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning , 2019, International journal of molecular sciences.

[2]  V. Valente,et al.  Evolutionary history and classification of Micropia retroelements in Drosophilidae species , 2019, bioRxiv.

[3]  Jingyi Zhang,et al.  Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation , 2019, eLife.

[4]  Jian Lu,et al.  Diversification of Transposable Elements in Arthropods and Its Impact on Genome Evolution , 2019, Genes.

[5]  Antonio Palazzo,et al.  Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes , 2019, Mobile DNA.

[6]  G. Bourque,et al.  Identifying co‐opted transposable elements using comparative epigenomics , 2018, Development, growth & differentiation.

[7]  I. Arkhipova Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories , 2017, Mobile DNA.

[8]  Douglas R. Hoen,et al.  Abiotic Stress Phenotypes Are Associated with Conserved Genes Derived from Transposable Elements , 2017, Front. Plant Sci..

[9]  M. Pavlicev,et al.  Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints , 2017, Molecular biology and evolution.

[10]  Josefa González,et al.  Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. , 2017, Trends in genetics : TIG.

[11]  E. Betrán,et al.  Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. , 2017, Trends in genetics : TIG.

[12]  J. Bennetzen,et al.  New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication , 2017, Genome Biology.

[13]  J. Casacuberta,et al.  Impact of transposable elements on polyploid plant genomes. , 2017, Annals of botany.

[14]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[15]  P. Capy,et al.  Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication , 2017, Genome biology and evolution.

[16]  M. Long,et al.  LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans , 2016, Genome research.

[17]  P. Suprasanna,et al.  Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response , 2016, Front. Plant Sci..

[18]  Bing Li,et al.  Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L. , 2016, Scientific Reports.

[19]  G. Faulkner,et al.  Transposable elements in the mammalian embryo: pioneers surviving through stealth and service , 2016, Genome Biology.

[20]  M. Blanchette,et al.  Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements , 2016, Molecular biology and evolution.

[21]  B. Gaut,et al.  Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. , 2016, Current opinion in plant biology.

[22]  S. Masuda,et al.  A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity , 2016, Scientific Reports.

[23]  M. Chase,et al.  Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? , 2016 .

[24]  D. Soltis,et al.  Polyploidy and genome evolution in plants. , 2015, Current opinion in genetics & development.

[25]  L. Tran,et al.  A transposable element in a NAC gene is associated with drought tolerance in maize seedlings , 2015, Nature Communications.

[26]  Oleg Simakov,et al.  The octopus genome and the evolution of cephalopod neural and morphological novelties , 2015, Nature.

[27]  Douglas R. Hoen,et al.  Discovery of novel genes derived from transposable elements using integrative genomic analysis. , 2015, Molecular biology and evolution.

[28]  Howard Y. Chang,et al.  Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells , 2015, Nature.

[29]  Michelle C. Stitzer,et al.  Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress , 2014, bioRxiv.

[30]  Zhihai Ma,et al.  Widespread contribution of transposable elements to the innovation of gene regulatory networks , 2014, Genome research.

[31]  Anthony J. Geneva,et al.  SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age , 2014, Nature Communications.

[32]  Maite G. Barrón,et al.  The transposable element Bari‐Jheh mediates oxidative stress response in Drosophila , 2014, Molecular ecology.

[33]  Nicole Lettner,et al.  How a Retrotransposon Exploits the Plant's Heat Stress Response for Its Activation , 2014, PLoS genetics.

[34]  S. Rasmussen,et al.  Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes , 2013, BMC Genomics.

[35]  Keith R. Oliver,et al.  Transposable Elements: Powerful Contributors to Angiosperm Evolution and Diversity , 2013, Genome biology and evolution.

[36]  A. Marchais,et al.  Reconstructing de novo silencing of an active plant retrotransposon , 2013, Nature Genetics.

[37]  H. Levin,et al.  Transposon integration enhances expression of stress response genes , 2012, Nucleic acids research.

[38]  N. Fedoroff Transposable Elements, Epigenetics, and Genome Evolution , 2012 .

[39]  Douglas R. Hoen,et al.  A Gene Family Derived from Transposable Elements during Early Angiosperm Evolution Has Reproductive Fitness Benefits in Arabidopsis thaliana , 2012, PLoS genetics.

[40]  Damon Lisch,et al.  How important are transposons for plant evolution? , 2012, Nature Reviews Genetics.

[41]  Douglas R. Hoen,et al.  Transposable Element Exaptation in Plants , 2012 .

[42]  Christoffer Nellåker,et al.  Rapid turnover of functional sequence in human and other genomes. , 2011, Annual review of genomics and human genetics.

[43]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[44]  Rongcheng Lin,et al.  Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in Arabidopsis Development[W] , 2011, Plant Cell.

[45]  Keith R. Oliver,et al.  Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates , 2011, Mobile DNA.

[46]  E. Bucher,et al.  An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress , 2011, Nature.

[47]  Charles Spillane,et al.  Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana , 2011, BMC Evolutionary Biology.

[48]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[49]  C. Vieira,et al.  Jumping genes and epigenetics: Towards new species. , 2010, Gene.

[50]  C. Parisod,et al.  Impact of transposable elements on the organization and function of allopolyploid genomes. , 2010, The New phytologist.

[51]  Yoichi Ishida,et al.  Transposable elements and an epigenetic basis for punctuated equilibria , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[52]  D. Lisch Epigenetic regulation of transposable elements in plants. , 2009, Annual review of plant biology.

[53]  E. Liu,et al.  Evolution of the mammalian transcription factor binding repertoire via transposable elements. , 2008, Genome research.

[54]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[55]  I. K. Jordan,et al.  Genome Defense Against Transposable Elements and the Origins of Regulatory RNA , 2008 .

[56]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[57]  Arnaud Le Rouzic,et al.  Long-term evolution of transposable elements , 2007, Proceedings of the National Academy of Sciences.

[58]  Toshihiro Kobayashi,et al.  Evolution of the Xenopus piggyBac transposon family TxpB: domesticated and untamed strategies of transposon subfamilies. , 2007, Molecular biology and evolution.

[59]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[60]  Rongcheng Lin,et al.  Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis , 2007, Science.

[61]  D. Voytas,et al.  Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin. , 2007, Molecular cell.

[62]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[63]  P. Capy,et al.  The First Steps of Transposable Elements Invasion , 2005, Genetics.

[64]  Rongcheng Lin,et al.  Arabidopsis FHY3/FAR1 Gene Family and Distinct Roles of Its Members in Light Control of Arabidopsis Development1 , 2004, Plant Physiology.

[65]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[66]  C. Sim,et al.  Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences , 2003, Molecular Genetics and Genomics.

[67]  A. Hoffmann,et al.  Environmental Stress as an Evolutionary Force , 2000 .

[68]  S. Gould,et al.  Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[70]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.