POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1

Mathematical modeling of technical applications often yields systems of differential algebraic equations. Uncertainties of physical parameters can be considered by the introduction of random variables. A corresponding uncertainty quantification requires one to solve the stochastic model. We focus on semiexplicit systems of nonlinear differential algebraic equations with index 1. The stochastic model is solved using the expansion of the generalised polynomial chaos. We investigate both the stochastic collocation technique and the stochastic Galerkin method to determine the unknown coefficient functions. In particular, we analyze the index of the larger coupled systems, which result from the stochastic Galerkin method. Numerical simulations of test examples are presented, where the two approaches are compared with respect to their efficiency.

[1]  Leon O. Chua,et al.  Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies , 1981 .

[2]  W Kampowsky,et al.  CLASSIFICATION AND NUMERICAL SIMULATION OF ELECTRIC CIRCUITS , 1992 .

[3]  P. Rentrop,et al.  Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.

[4]  Jing Li,et al.  Evaluation of failure probability via surrogate models , 2010, J. Comput. Phys..

[5]  Roland Pulch Modelling and simulation of autonomous oscillators with random parameters , 2011, Math. Comput. Simul..

[6]  Jeroen A. S. Witteveen,et al.  Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties , 2007 .

[7]  Roland Pulch Polynomial Chaos for Analysing Periodic Processes of Differential Algebraic Equations with Random Parameters , 2008 .

[8]  Roland Pulch,et al.  Polynomial Chaos for the Computation of Failure Probabilities in Periodic Problems , 2010 .

[9]  C. W. Gear,et al.  The index of general nonlinear DAEs , 1995 .

[10]  R. D. Berry,et al.  Eigenvalues of the Jacobian of a Galerkin-Projected Uncertain ODE System , 2011, SIAM J. Sci. Comput..

[11]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[12]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[13]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[14]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[15]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[16]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[17]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[18]  Roland Pulch,et al.  POLYNOMIAL CHAOS FOR LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS WITH RANDOM PARAMETERS , 2011 .

[19]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[20]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..