An axiomatic approach to finite means

Abstract In this paper we analyze the notion of a finite mean from an axiomatic point of view. We discuss several axiomatic alternatives, with the aim of establishing a universal definition reconciling all of them and exploring theoretical links to some branches of Mathematics as well as to multidisciplinary applications.

[1]  Vincenzo Cutello,et al.  Recursive connective rules , 1999, Int. J. Intell. Syst..

[2]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[3]  Graciela Chichilnisky Social Aggregation Rules and Continuity , 1982 .

[4]  Jerry S. Kelly,et al.  Social Choice Theory: An Introduction , 1988 .

[5]  V. Novák Fuzzy sets and their applications , 1989 .

[6]  G. Jameson Topology and Normed Spaces , 1974 .

[7]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[8]  Georg Aumann,et al.  Über Räume mit Mittelbildungen , 1944 .

[9]  B. Eckmann,et al.  Räume mit Mittelbildungen , 1954 .

[10]  Juan Carlos Candeal,et al.  The Moebius strip and a social choice paradox , 1994 .

[11]  Humberto Bustince,et al.  New trends on the permutability equation , 2014 .

[12]  K. Arrow Social Choice and Individual Values , 1951 .

[13]  G. Debreu ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .

[14]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[15]  Radko Mesiar,et al.  Fuzzy integrals - what are they? , 2008 .

[16]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[17]  Humberto Bustince,et al.  A Practical Guide to Averaging Functions , 2015, Studies in Fuzziness and Soft Computing.

[18]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[19]  Gleb Beliakov,et al.  Idempotent Weighted Aggregation Based on Binary Aggregation Trees , 2017, Int. J. Intell. Syst..

[20]  Marta Cardin,et al.  Symmetric aggregation operators on complete lattices , 2015 .

[21]  F. J. Juan A note on Fung-Fu's theorem , 1985 .

[22]  Mitio Nagumo Über eine Klasse der Mittelwerte , 1930 .

[23]  Graciela Chichilnisky,et al.  Necessary and Sufficient Conditions for a Resolution of the Social Choice Paradox , 1981 .

[24]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[25]  Walter Bossert,et al.  On the extension of preferences over a set to the power set: An axiomatic characterization of a quasi-ordering , 1989 .

[26]  Juan Carlos Candeal,et al.  Aggregation of Preferences in Crisp and Fuzzy Settings: Functional Equations Leading to Possibility Results , 2011, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[27]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[28]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[29]  Jean-Luc Marichal,et al.  On nonstrict means , 1997 .

[30]  B. Peleg,et al.  A note on the extension of an order on a set to the power set , 1984 .

[31]  E. Hayes Mean Values. , 2022, Science.

[32]  Humberto Bustince,et al.  A generalization of the migrativity property of aggregation functions , 2012, Inf. Sci..

[33]  James Keesling,et al.  The group of homeomorphisms of a solenoid , 1972 .

[34]  J. Montero,et al.  Representation of consistent recursive rules , 2001, Eur. J. Oper. Res..

[35]  Anna Kolesárová,et al.  Associative n - dimensional copulas , 2011, Kybernetika.

[36]  Giovanni Parmigiani,et al.  Utility and Means in the 1930s , 1993 .

[37]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[38]  Irving Kaplansky,et al.  Infinite Abelian groups , 1954 .

[39]  Istituto italiano degli attuari Giornale dell'Istituto italiano degli attuari , 1930 .

[40]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[41]  Esteban Induráin Eraso,et al.  Medias generalizadas y aplicaciones , 1994 .

[42]  Javier Montero,et al.  Consistency and Stability in Aggregation Operators: An Application to Missing Data Problems , 2013, AGOP.

[43]  Javier Montero,et al.  Consistency and stability in aggregation operators: An application to missing data problems , 2014, Int. J. Comput. Intell. Syst..

[44]  J. Aczél On mean values , 1948 .

[45]  Juan Carlos Candeal,et al.  Aggregation of preferences from algebraic models on groups , 1995 .

[46]  B. Eckmann,et al.  Social choice and topology a case of pure and applied mathematics , 2004 .

[47]  Jozo Dujmović,et al.  Extension of bivariate means to weighted means of several arguments by using binary trees , 2016, Inf. Sci..

[48]  Massimo Squillante,et al.  Representation of Preferences by Quasi-Linear Means , 2002, Annals of Mathematics and Artificial Intelligence.

[49]  Radko Mesiar,et al.  On copulas, quasicopulas and fuzzy logic , 2008, Soft Comput..

[50]  Zoltán Daróczy,et al.  On the Equality Problem of Conjugate Means , 2010 .

[51]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .