Estimation of Constrained Parameters With Guaranteed MSE Improvement

We address the problem of estimating an unknown parameter vector x in a linear model y=Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope X. The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any xisinX, an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing "superefficient" estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region X

[1]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[2]  Yonina C. Eldar,et al.  Robust mean-squared error estimation in the presence of model uncertainties , 2005, IEEE Transactions on Signal Processing.

[3]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[4]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[5]  Yonina C. Eldar,et al.  Covariance shaping least-squares estimation , 2003, IEEE Trans. Signal Process..

[6]  Björn E. Ottersten,et al.  The evil of superefficiency , 1996, Signal Process..

[7]  A. Farina,et al.  Hard-constrained versus soft-constrained parameter estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[8]  J. Berger Admissible Minimax Estimation of a Multivariate Normal Mean with Arbitrary Quadratic Loss , 1976 .

[9]  Tze Fen Li,et al.  A family of admissible minimax estimators of the mean of a multivariate, normal distribution , 1986 .

[10]  A. Farina,et al.  Hard-constrained vs . soft-constrained parameter estimation , 2006 .

[11]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[12]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[13]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[14]  Yonina C. Eldar,et al.  Maximum set estimators with bounded estimation error , 2005, IEEE Transactions on Signal Processing.

[15]  Yonina C. Eldar Comparing between estimation approaches: admissible and dominating linear estimators , 2006, IEEE Transactions on Signal Processing.

[16]  Zhi-Fu Wang,et al.  On Biased Estimation in Linear Models , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[17]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[18]  Y.C. Eldar,et al.  Blind minimax estimators: improving on least-squares estimation , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[19]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[20]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[21]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[22]  Yonina C. Eldar,et al.  Linear minimax regret estimation of deterministic parameters with bounded data uncertainties , 2004, IEEE Transactions on Signal Processing.