Ion implantation of titanium based biomaterials

Titanium and its alloys are widely used as implant materials. Their integration in the bone is in general very good without fibrous interface layer. However, titanium and its alloys have certain limitations. Metal ions are released from the implant alloy and have been detected in tissues close to titanium implants. The release of these elements, even in small amounts, may cause local irritation of the tissues surrounding the implant. Cell and tissue responses are affected not only by the chemical properties of the implant surface, but also by the surface topography or roughness of the implants. To overcome the problem of ion release and to improve the biological, chemical, and mechanical properties, many surface treatment techniques are used. Any surface treatment that would elicit favorable response from tissues can be applied to enhance the usefulness of the implants. In view of this, the current review describes surface modification of titanium and titanium alloys by ion beam implantation.

[1]  T. Hanawa In vivo metallic biomaterials and surface modification , 1999 .

[2]  M. Arenas,et al.  Corrosion behaviour of nitrogen implanted titanium in simulated body fluid , 2000 .

[3]  E. Mitchell The physics of diamond , 1961 .

[4]  A. Vadiraj,et al.  Fretting fatigue studies of titanium nitride-coated biomedical titanium alloys , 2006 .

[5]  Subra Suresh,et al.  The role of adhesion in contact fatigue , 1999 .

[6]  M. Maitz,et al.  Promoted calcium-phosphate precipitation from solution on titanium for improved biocompatibility by ion implantation , 2002 .

[7]  A. García-Luis,et al.  Improved osseointegration in ion implantation-treated dental implants , 2002 .

[8]  Donald L. Wise,et al.  Biomaterials in Orthopedics , 2003 .

[9]  J. Celis,et al.  Improvement of the fretting fatigue and fretting wear of Ti6Al4V by duplex surface modification , 1999 .

[10]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[11]  W. Crone,et al.  Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation. , 2003, Biomaterials.

[12]  R. Thamburaj,et al.  Optimising ion implantation conditions for improving wear, fatigue, and fretting fatigue of Ti–6Al–4V , 1988 .

[13]  Lorenzo Torrisi,et al.  Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation , 2004 .

[14]  Boris M. Smirnov,et al.  Physics of Ionized Gases , 2001 .

[15]  J. Eckert,et al.  Nanostructured Ti-based multi-component alloys with potential for biomedical applications. , 2003, Biomaterials.

[16]  F. H. Jones,et al.  Effects of calcium ion implantation on human bone cell interaction with titanium. , 2005, Biomaterials.

[17]  G. Steiner,et al.  Ion beam sensitizing of titanium surfaces to hydroxyapatite formation , 2000 .

[18]  J. Oñate,et al.  Bone cell adhesion on ion implanted titanium alloys , 2005 .

[19]  J. Mansfield Studies in Penetration of Charged Particles in Matter , 1965 .

[20]  W. Matz,et al.  Modification of the Ti–6Al–4V alloy by ion implantation of calcium and/or phosphorus , 2002 .

[21]  Y. L. Jeyachandran,et al.  A study on bacterial attachment on titanium and hydroxyapatite based films , 2006 .

[22]  K. Gross,et al.  Influence of abrasion on the surface characteristics of thermally sprayed hydroxyapatite coatings. , 2002, Biomaterials.

[23]  M. Maitz,et al.  Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. , 2005, Biomaterials.

[24]  G. Betz,et al.  Sputtering by particle bombardment , 1983 .

[25]  A. Ślósarczyk,et al.  Influence of the Ca- and P-enriched oxide layers produced on titanium and the Ti6Al4V alloy by the IBAD method upon the corrosion resistance of these materials , 2003 .

[26]  C. Wen,et al.  Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. , 2009, Acta biomaterialia.

[27]  K. Kim,et al.  Surface Modification of Titanium for Biomaterial Applications , 2010 .

[28]  P. Sioshansi Improving the properties of titanium alloys by ion implantation , 1990 .

[29]  G. Steiner,et al.  Solution deposition of hydroxyapatite on titanium pretreated with a sodium ion implantation. , 2002, Journal of biomedical materials research.

[30]  F. Bloch,et al.  Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie , 1933 .

[31]  M. Yoshinari,et al.  Influence of surface modifications to titanium on antibacterial activity in vitro. , 2001, Biomaterials.

[32]  V. Shafranov ON THE PHYSICS OF IONIZED GASES , 1957 .

[33]  N. Huang,et al.  The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. , 2004, Biomaterials.

[34]  Chemical Modification of Titanium Nitride Coating via Light-Element Ion Implantation toward High Mechanical Performance , 2003 .

[35]  F. H. Jones,et al.  Modulation of the human bone cell cycle by calcium ion-implantation of titanium. , 2007, Biomaterials.

[36]  Yihe Zhang,et al.  Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. , 2006, Biomaterials.

[37]  E. Jezierska,et al.  Effect of carbon ion implantation on the structure and corrosion resistance of OT-4-0 titanium alloy , 1999 .

[38]  A. Perry Ion Implantation of Titanium Alloys for Biomaterial and Other Applications , 1987 .

[39]  James K. Hirvonen,et al.  Current topics of ion beam R&D , 1994 .

[40]  毅一 小松原 G. Dearnaley, J. H. Freeman, R. S. Nelson and J. Stephen : Ion Implantation, North-Holland, Amsterdam and London, 1973, xv+802ページ, 23×16cm, 29,250円 (Series, Defects in Crystalline Solids, Vol. 8). , 1974 .

[41]  G. Steiner,et al.  Hydroxyapatite nucleation on Na ion implanted Ti surfaces , 2000 .

[42]  S. Baker,et al.  Hardness–depth profile of a carbon-implanted Ti–6Al–4V alloy and its relation to composition and microstructure , 2001 .

[43]  J. Bouaziz,et al.  Sintering and mechanical properties of tricalcium phosphate–fluorapatite composites , 2009 .

[44]  P. Sioshansi,et al.  Wear improvement of surgical titanium alloys by ion implantation , 1985 .

[45]  K E Tanner,et al.  Titanium in Medicine , 2002 .

[46]  T. Röstlund,et al.  Difference in tissue response to nitrogen-ion-implanted titanium and c.p. titanium in the abdominal wall of the rat. , 1990, Journal of biomedical materials research.

[47]  F. H. Jones,et al.  Effects of calcium ion-implantation of titanium on bone cell function in vitro. , 2007, Journal of biomedical materials research. Part A.

[48]  J. Poate,et al.  Surface‐layer composition changes in sputtered alloys and compounds , 1977 .

[49]  Tomas Albrektsson,et al.  The bone response of oxidized bioactive and non-bioactive titanium implants. , 2005, Biomaterials.

[50]  R. Rodríguez,et al.  Niche sectors for economically competitive ion implantation treatments , 2002 .

[51]  J. Weng,et al.  Characterization of surface oxide films on titanium and adhesion of osteoblast. , 2003, Biomaterials.

[52]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.

[53]  V. Ţura,et al.  Improvement of polyurethane surface biocompatibility by plasma and ion beam techniques , 2005 .

[54]  R. Buchanan,et al.  Wear-accelerated corrosion of Ti-6Al-4V and nitrogen-ion-implanted Ti-6Al-4V: mechanisms and influence of fixed-stress magnitude. , 1987, Journal of biomedical materials research.

[55]  P. Rokkanen,et al.  Bone remodelling in the pores and around load bearing transchondral isoelastic porous-coated glassy carbon implants: Experimental study in rabbits , 1998, Journal of materials science. Materials in medicine.

[56]  Horst Stöcker,et al.  Handbook of physics , 2002 .

[57]  H C van der Mei,et al.  Influence of substratum wettability on the strength of adhesion of human fibroblasts. , 1992, Biomaterials.

[58]  G. Steiner,et al.  Surface sensitivity of ion implanted titanium to hydroxyapatite formation , 2000 .

[59]  J. Pethica,et al.  The wear behavior of nitrogen-implanted metals , 1984 .

[60]  E. Chang,et al.  Interface investigation of plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 intermediate layer as bond coat , 2001 .

[61]  S. Panigrahi,et al.  Analysis of Indian cholesterol gallstones by particle-induced X-ray emission and thermogravimetry–derivative thermogravimetry , 2006, European journal of gastroenterology & hepatology.

[62]  W. H. Goldmann,et al.  Binding Affinity of Metal Ions to the CD11b A-domain Is Regulated by Integrin Activation and Ligands* , 2004, Journal of Biological Chemistry.

[63]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[64]  Krishnan S. Raja,et al.  Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications , 2006 .

[65]  T. Rautray,et al.  In situ analyses of gallstone inner layers by external PIXE , 2010 .

[66]  W. H. White,et al.  A Handbook of Physics , 2011 .

[67]  R. Thamburaj,et al.  Optimising Ion Implantation Conditions for Improving Wear, Fatigue, and Fretting Fatigue Of Ti-6Ai-4V , 1989 .

[68]  W. Nie,et al.  beta-TCP/MCPM-based premixed calcium phosphate cements. , 2009, Acta biomaterialia.

[69]  F. Horan Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty , 2005 .

[70]  J. K. Howard,et al.  Auger study of preferred sputtering on binary alloy surfaces , 1976 .

[71]  K. Kim,et al.  Accelerator based synthesis of hydroxyapatite by MeV ion implantation , 2010 .

[72]  K. Gonsalves,et al.  Micro/Nanomachining and Fabrication of Materials for Biomedical Applications , 2007 .

[73]  Joshua J. Jacobs,et al.  Corrosion and Biocompatibility of Orthopedic Implants , 2003 .

[74]  E. Jezierska,et al.  Effect of nitrogen-ion implantation on the corrosion resistance of OT-4-0 titanium alloy in 0.9% NaCl environment , 1999 .

[75]  J. Oñate,et al.  Interaction of engineered surfaces with the living world: Ion implantation vs. osseointegration , 2007 .

[76]  R. Kelly,et al.  The sputtering of oxides part i: a survey of the experimental results , 1973 .

[77]  F. Cui,et al.  Biomaterials modification by ion-beam processing , 1999 .

[78]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[79]  T. Booker,et al.  High-intensity plasma ion nitriding of orthopedic materials: Part I. Tribological study , 2004 .

[80]  P. Serekian Hydroxyapatite: from Plasma Spray to Electrochemical Deposition , 2004 .

[81]  C. R. Howlett,et al.  Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. , 1999, Journal of biomedical materials research.

[82]  Y. Wan,et al.  Modification of medical metals by ion implantation of copper , 2007 .

[83]  T. Röstlund,et al.  Commercially pure titanium and Ti6AI4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone , 1993 .

[84]  Shankar Mall,et al.  An evaluation of parameters for predicting fretting fatigue crack initiation , 2000 .

[85]  C. Goodman Treatise on Materials Science and Technology , 1974 .

[86]  Mundiyath Venugopalan,et al.  Plasma Chemistry I , 1980 .

[87]  G. Steiner,et al.  Surface induced reactivity for titanium by ion implantation , 2000, Journal of materials science. Materials in medicine.

[88]  Y. Huang,et al.  Surface modification of medical metals by ion implantation of silver and copper , 2007 .

[89]  U. Kamachi Mudali,et al.  Improvements in Localized Corrosion Resistance of Nitrogen Ion Implanted Type 316L Stainless Steel Orthopaedic Implant Devices , 1999 .

[90]  K. Kim,et al.  Preparation and characteristics of nano-grained calcium phosphate coatings on titanium from ultrasonated bath at acidic pH. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[91]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[92]  P. Sioshansi,et al.  Surface treatment of biomaterials by ion beam processes , 1996 .

[93]  R. Vardiman,et al.  The improvement of fatigue life in Ti‐6Al‐4V by ion implantation , 1982 .

[94]  Raymond F. Wegman,et al.  Titanium and Titanium Alloys , 2013 .

[95]  F. H. Jones,et al.  Human alveolar bone cell adhesion and growth on ion-implanted titanium. , 2004, Journal of biomedical materials research. Part A.

[96]  Marta Brizuela,et al.  Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine , 2001 .

[97]  H. E. Kim,et al.  Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. , 2000, Biomaterials.

[98]  C. Duret-Thual,et al.  The resistance to localized corrosion in neutral chloride medium of an AISI 304l stainless steel implanted with nitrogen and neon ions , 1992 .

[99]  Gregory Stephanopoulos,et al.  Effects of substratum morphology on cell physiology , 1994, Biotechnology and bioengineering.

[100]  R. Wei,et al.  High intensity plasma ion nitriding of orthopedic materials: Part II. Microstructural analysis , 2004 .

[101]  R. Bruce Martin Bones: structure and mechanics , 2003 .

[102]  K. Anselme,et al.  Osteoblast adhesion on biomaterials. , 2000, Biomaterials.

[103]  F. Cui,et al.  Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition , 1997, Journal of materials science. Materials in medicine.

[104]  T. Hanawa,et al.  X-ray photoelectron spectroscopy of calcium-ion-implanted titanium , 1993 .

[105]  C. Gay-Escoda,et al.  Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants. , 2003, Clinical oral implants research.

[106]  C. R. Howlett,et al.  The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells , 1994 .

[107]  B. Paine,et al.  Ion beam mixing in amorphous silicon I. Experimental investigation , 1981 .

[108]  J. Ong,et al.  Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. , 1992, Biomaterials.

[109]  Z. Jin,et al.  Effect of surface modification on surface properties and tribological behaviours of titanium alloys , 2009 .

[110]  R. S. Nelson,et al.  Ion implantation , 1973 .

[111]  P. Dieppe,et al.  Crystal deposition diseases of the joints , 1980 .

[112]  H. Boldyryeva,et al.  High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation , 2005 .

[113]  T. Rautray,et al.  In situ analysis of human teeth by external PIXE , 2010 .

[114]  D. Williams,et al.  Biocompatibility of clinical implant materials , 1981 .

[115]  J. Weng,et al.  Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. , 2004, Biomaterials.

[116]  David W. Hoeppner,et al.  Fretting Fatigue: Current Technology and Practices , 2000 .

[117]  J. Jansen,et al.  Effect of parallel surface microgrooves and surface energy on cell growth. , 1995, Journal of biomedical materials research.

[118]  Y. Liu,et al.  Hydrogen embrittlement and fracture toughness of a titanium alloy with surface modification by hard coatings , 1996 .

[119]  M. Tsukamoto,et al.  Hydroxyapatite film formed by particle beam irradiation , 2004 .

[120]  M. Nastasi,et al.  Tribological behavior of high-density polyethylene in dry sliding contact with ion-implanted CoCrMo , 1999 .

[121]  M. Lewandowska-Szumieł,et al.  Effect of dual ion implantation of calcium and phosphorus on the properties of titanium. , 2005, Biomaterials.

[122]  N. Mikkelsen,et al.  Ion implantation—the job coater's supplement to coating techniques , 2002 .

[123]  M. Maitz,et al.  Ion beam treatment of titanium surfaces for enhancing deposition of hydroxyapatite from solution. , 2002, Biomolecular engineering.

[124]  T. Tate,et al.  Adhesion of bone cells to ion-implanted titanium , 2003, Journal of materials science. Materials in medicine.

[125]  A. Giannakopoulos,et al.  An experimental investigation of fretting fatigue in Ti-6Al-4V: the role of contact conditions and microstructure , 2001 .

[126]  M. Lewandowska-Szumieł,et al.  Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium. , 2001, Biomaterials.

[127]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[128]  M. Lewandowska-Szumieł,et al.  Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. , 2002, Biomaterials.

[129]  N. Creugers,et al.  Titanium nitride coatings in clinical dentistry. , 1992, Journal of dentistry.

[130]  A. Unsworth,et al.  N+ ion implantation of Ti6Al4V alloy and UHMWPE for total joint replacement application. , 2003, Journal of applied biomaterials & biomechanics : JABB.

[131]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[132]  J. Ziegler The stopping and range of ions in solids vol 1 : The stopping and ranges of ions in matter , 2013 .

[133]  J. Lindhard,et al.  ENERGY DISSIPATION BY IONS IN THE kev REGION , 1961 .

[134]  David L. Cochran,et al.  Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. , 2003, European cells & materials.

[135]  R. Buchanan,et al.  Ion implantation of surgical Ti-6Al-4V for improved resistance to wear-accelerated corrosion. , 1987, Journal of biomedical materials research.

[136]  H. Hansson,et al.  Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. , 1981, Acta orthopaedica Scandinavica.

[137]  O. Odusanya,et al.  Effect of nitrogen plasma-based ion implantation on joint prosthetic material , 2002 .

[138]  C. Gay-Escoda,et al.  In vivo low-density bone apposition on different implant surface materials. , 2009, International journal of oral and maxillofacial surgery.

[139]  H. Bethe,et al.  THE STOPPING POWER OF K-ELECTRONS , 1952 .

[140]  C. Hwang,et al.  Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron-beam deposition , 1999 .

[141]  T. Hanawa,et al.  AES studies on the dissolution of surface oxide from calcium-ion-implanted titanium in nitric acid and buffer solutions , 1996 .

[142]  S. Panigrahi,et al.  Analysis of Indian pigment gallstones , 2007 .

[143]  R Narayanan,et al.  Calcium phosphate-based coatings on titanium and its alloys. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[144]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[145]  R. Pilliar,et al.  Evaluating interface strength of calcium phosphate sol-gel-derived thin films to Ti6Al4V substrate. , 2005, Biomaterials.

[146]  J. P. Li,et al.  A novel porous Ti6Al4V: characterization and cell attachment. , 2005, Journal of biomedical materials research. Part A.

[147]  M. Metikoš-huković,et al.  The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. , 2003, Biomaterials.

[148]  T. Hanawa,et al.  Amount of hydroxyl radical on calcium-ion-implanted titanium and point of zero charge of constituent oxide of the surface-modified layer , 1998, Journal of materials science. Materials in medicine.

[149]  L. Visai,et al.  Antibacterial Activity of Zinc Modified Titanium Oxide Surface , 2006, The International journal of artificial organs.

[150]  M. Yoshinari,et al.  Thin hydroxyapatite coating produced by the ion beam dynamic mixing method. , 1994, Biomaterials.

[151]  Daoxin Liu,et al.  Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature , 2009 .

[152]  J Davenas,et al.  Surface implantation treatments to prevent infection complications in short term devices. , 2002, Biomolecular engineering.

[153]  T. Hanawa,et al.  Microdissolution of calcium ions from calciumion-implanted titanium , 1996 .