Character evolution in Hydrozoa (phylum Cnidaria).

The diversity of hydrozoan life cycles, as manifested in the wide range of polyp, colony, and medusa morphologies, has been appreciated for centuries. Unraveling the complex history of characters involved in this diversity is critical for understanding the processes driving hydrozoan evolution. In this study, we use a phylogenetic approach to investigate the evolution of morphological characters in Hydrozoa. A molecular phylogeny is reconstructed using ribosomal DNA sequence data. Several characters involving polyp, colony, and medusa morphology are coded in the terminal taxa. These characters are mapped onto the phylogeny and then the ancestral character states are reconstructed. This study confirms the complex evolutionary history of hydrozoan morphological characters. Many of the characters involving polyp, colony, and medusa morphology appear as synapomorphies for major hydrozoan clades, yet homoplasy is commonplace.

[1]  P. Schuchert,et al.  Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae , 2010 .

[2]  A. Collins,et al.  Molecules Clarify a Cnidarian Life Cycle – The “Hydrozoan” Microhydrula limopsicola Is an Early Life Stage of the Staurozoan Haliclystus antarcticus , 2010, PloS one.

[3]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[4]  A. Couloux,et al.  Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. , 2009, Systematic biology.

[5]  C. Cunningham,et al.  Reconciling genealogical and morphological species in a worldwide study of the Family Hydractiniidae (Cnidaria, Hydrozoa) , 2009 .

[6]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[7]  Steven H. D. Haddock,et al.  Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa , 2008, Journal of the Marine Biological Association of the United Kingdom.

[8]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[9]  C. Cunningham,et al.  From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors , 2008, PloS one.

[10]  A. Collins,et al.  Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) , 2008, Journal of the Marine Biological Association of the United Kingdom.

[11]  P. Schuchert The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 1 , 2008 .

[12]  A. Collins,et al.  Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria , 2008, BMC Evolutionary Biology.

[13]  M. Manuel,et al.  Phylogeny of the Plumularioidea (Hydrozoa, Leptothecata): evolution of colonial organisation and life cycle , 2007 .

[14]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[15]  K. Halanych,et al.  Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). , 2006, Molecular phylogenetics and evolution.

[16]  B. Schierwater,et al.  Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. , 2006, Systematic biology.

[17]  F. Boero,et al.  An introduction to Hydrozoa , 2006 .

[18]  C. Dunn,et al.  Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. , 2005, Systematic biology.

[19]  A. Collins,et al.  Cladistic analysis of Medusozoa and cnidarian evolution , 2005 .

[20]  B. Schierwater,et al.  Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data , 2005 .

[21]  P. Cartwright The development and evolution of hydrozoan polyp and colony form , 2004, Hydrobiologia.

[22]  F. Boero,et al.  Fauna of the Mediterranean Hydrozoa , 2004 .

[23]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[24]  P. Schuchert Revision of the European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Families Oceanidae and Pachycordylidae , 2004 .

[25]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[26]  P. Cartwright Developmental Insights into the Origin of Complex Colonial Hydrozoans1 , 2003, Integrative and comparative biology.

[27]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[28]  A. Collins Phylogeny of Medusozoa and the evolution of cnidarian life cycles , 2002 .

[29]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[30]  P. Schuchert Hydroids of Greenland and Iceland (Cnidaria, Hydrozoa) , 2001, Meddelelser om Grønland. Bioscience.

[31]  A. C. Marques,et al.  Cladistic analysis and new classification of the family Tubulariidae (Hydrozoa, Anthomedusae) , 2001 .

[32]  G. Bavestrello,et al.  Life history of Perarella schneideri (Hydrozoa, Cytaeididae) in the Ligurian Sea* , 2000 .

[33]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[34]  F. Boero,et al.  Synopsis of the families and genera of the Hydromedusae of the world, with a list of the worldwide species , 2000 .

[35]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[36]  P. Schuchert The marine fauna of New Zealand: athecate hydroids and their medusae (Cnidaria: Hydrozoa) , 1998 .

[37]  K. Nicholas,et al.  GeneDoc: Analysis and visualization of genetic variation , 1997 .

[38]  R. Gutell,et al.  Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. , 1996, Journal of molecular biology.

[39]  Rupert De Wachter,et al.  DCSE, an interactive tool for sequence alignment and secondary structure research , 1993, Comput. Appl. Biosci..

[40]  R De Wachter,et al.  DCSE, an interactive tool for sequence alignment and secondary structure research. , 1993, Computer applications in the biosciences : CABIOS.

[41]  L. Buss,et al.  Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae , 1993 .

[42]  P. Cornelius,et al.  The European and Mediterranean species of Aglaophenia (Cnidaria: Hydrozoa) , 1991 .

[43]  K. Petersen Evolution and taxonomy in capitate hydroids and medusae (Cnidaria: Hydrozoa) , 1990 .

[44]  F. Boero,et al.  Motile sexual stages and evolution of Leptomedusae (Cnidaria) , 1987 .

[45]  F. Boero,et al.  Inconsistent evolution and paedomorphosis among the hydroids and medusae of the Athecatae/Anthomedusae and the Thecatae/Leptomedusae (Cnidaria, Hydrozoa) , 1987 .

[46]  J. Bouillon Modern trends in the systematics, ecology, and evolution of hydroids and hydromedusae , 1987 .

[47]  J. Bouillon Essai de classification des Hydropolypes-Hydroméduses (Hydrozoa-Cnidaria) , 1985 .

[48]  D. Williams Bulletin of the British Museum (Natural History) , 1978 .

[49]  L. Eldredge,et al.  Protozoa through ctenophora , 1977 .

[50]  N. B. Eales,et al.  Invertebrates , 2003 .

[51]  L. Hyman The Invertebrates: Protozoa Through Ctenophora , 1940 .

[52]  L. Hyman The invertebrates: Protozoa through Ctenophora vol.1 , 1940 .

[53]  Allman XXXV.—On the construction and limitation of genera among the Hydroida , 1864 .