Experimental investigation of the suppressed superconducting gap and double-resonance mode in Ba1−xKxFe2As2

[1]  R. Birgeneau,et al.  Spectral Evidence for Emergent Order in Ba_{1-x}Na_{x}Fe_{2}As_{2}. , 2018, Physical review letters.

[2]  P. Hirschfeld,et al.  Using controlled disorder to probe the interplay between charge order and superconductivity in NbSe2 , 2017, Nature Communications.

[3]  Shik Shin,et al.  Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors , 2017, Science Advances.

[4]  Thomas Wolf,et al.  Possible coexistence of double-Q magnetic order and chequerboard charge order in the re-entrant tetragonal phase of Ba 0.76 K 0.24 Fe 2 As 2 , 2017, 1705.06436.

[5]  T. Wolf,et al.  Complex phase diagram of Ba 1-x Na x Fe 2 As 2 : a multitude of phases striving for the electronic entropy , 2015, 1510.03685.

[6]  M. Kanatzidis,et al.  Double-Q spin-density wave in iron arsenide superconductors , 2015, Nature Physics.

[7]  J. Geck,et al.  Orbital symmetry of charge-density-wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67. , 2014, Nature materials.

[8]  T. Wolf,et al.  Infrared Study of the Spin Reorientation Transition and Its Reversal in the Superconducting State in Underdoped Ba(1-x)K(x)Fe(2)As(2). , 2015, Physical review letters.

[9]  M. Kanatzidis,et al.  Tetragonal magnetic phase in Ba 1 -x K x Fe 2 As 2 from x-ray and neutron diffraction , 2015, 1505.01433.

[10]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[11]  T. Wolf,et al.  Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1−xKxFe2As2 , 2014, Nature Communications.

[12]  F. Kruger,et al.  Symmetry of reentrant tetragonal phase in Ba 1 -x Na x Fe 2 As 2 : Magnetic versus orbital ordering mechanism , 2014, 1409.5324.

[13]  H. Löhneysen,et al.  Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe , 2014, 1407.1418.

[14]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[15]  Jian-Xin Zhu,et al.  Orbital-selective superconductivity, gap anisotropy, and spin resonance excitations in a multiorbital t - J 1 - J 2 model for iron pnictides , 2013, 1306.4184.

[16]  M. Kanatzidis,et al.  Magnetically driven suppression of nematic order in an iron-based superconductor , 2013, Nature Communications.

[17]  J. Schmalian,et al.  Nematic order in iron superconductors - who is in the driver's seat? , 2013, 1312.6085.

[18]  P. Dai,et al.  Measurement of a double neutron-spin resonance and an anisotropic energy gap for underdoped superconducting NaFe0.985Co0.015As using inelastic neutron scattering. , 2013, Physical review letters.

[19]  A. Millis,et al.  Nematicity as a probe of superconducting pairing in iron-based superconductors. , 2013, Physical review letters.

[20]  T. Perring,et al.  Spin fluctuations away from ( π , 0 ) in the superconducting phase of molecular-intercalated FeSe , 2013, 1305.4898.

[21]  H. Mook,et al.  Doping dependence of the spin excitations in the Fe-based superconductors Fe1+yTe1−xSex , 2013, 1305.4108.

[22]  R. Birgeneau,et al.  Effect of electron correlations on magnetic excitations in the isovalently doped iron-based superconductor Ba(Fe(1-x)Ru(x))(2)As(2). , 2013, Physical review letters.

[23]  B. Keimer,et al.  Conformity of spin fluctuations in alkali-metal iron selenide superconductors inferred from the observation of a magnetic resonant mode in KxFe2−ySe2 , 2012, 1208.5033.

[24]  T. Perring,et al.  Spin-wave excitations and superconducting resonant mode in CsxFe2−ySe2 , 2012, 1208.3610.

[25]  H. Eisaki,et al.  Abrupt change in the energy gap of superconducting Ba 1-x K x Fe 2 As 2 single crystals with hole doping , 2012, 1204.0326.

[26]  Yuan Li,et al.  Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of Rb x Fe 2 − y Se 2 single crystals , 2011, 1112.1636.

[27]  Hiroki Nakamura,et al.  s±-like spin resonance in the iron-based nodal superconductor BaFe2(As0.65P0.35)2observed using inelastic neutron scattering , 2011 .

[28]  M. Kanatzidis,et al.  Effect of Fermi surface nesting on resonant spin excitations in Ba(1-x)K(x)Fe2As2. , 2011, Physical review letters.

[29]  T. Togashi,et al.  Orbital-Independent Superconducting Gaps in Iron Pnictides , 2011, Science.

[30]  T. Das,et al.  Two energy scales in the magnetic resonance spectrum of electron and hole doped pnictide superconductors. , 2011, Physical review letters.

[31]  T. Xiang,et al.  Neutron Scattering Studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor , 2010, Scientific reports.

[32]  A. P. Sorini,et al.  Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition , 2010, Proceedings of the National Academy of Sciences.

[33]  X. Dai,et al.  Fermi surface dichotomy of the superconducting gap and pseudogap in underdoped pnictides. , 2009, Nature communications.

[34]  X. H. Chen,et al.  Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[35]  J. Kim,et al.  Symmetry of spin excitation spectra in the tetragonal paramagnetic and superconducting phases of 122-ferropnictides , 2010, 1007.3722.

[36]  M. Lumsden,et al.  Dispersion of the superconducting spin resonance in underdoped and antiferromagneticBaFe2As2 , 2010, 1002.3350.

[37]  S. Chi,et al.  Electron-doping evolution of the low-energy spin excitations in the iron arsenide superconductor BaFe2-xNixAs2 , 2010, 1002.3133.

[38]  K. Hradil,et al.  Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe 1.85 Co 0.15 As 2 , 2009, 0907.3632.

[39]  A. Amato,et al.  Momentum-resolved superconducting gap in the bulk of Ba1−xKxFe2As2 from combined ARPES and μSR measurements , 2009, 0903.4362.

[40]  Y. Li,et al.  A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors , 2009, 0903.2291.

[41]  S. Chi,et al.  Inelastic neutron-scattering measurements of a three-dimensional spin resonance in the FeAs-based BaFe1.9Ni0.1As2 superconductor. , 2009, Physical review letters.

[42]  T. Xiang,et al.  Electronic structure and unusual exchange splitting in the spin-density-wave state of the BaFe2As2 parent compound of iron-based superconductors. , 2009, Physical review letters.

[43]  P. Dai,et al.  Spin gap and magnetic resonance in superconducting BaFe1.9Ni0.1As2 , 2009, 0902.0813.

[44]  H. Mook,et al.  Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2. , 2008, Physical review letters.

[45]  T. Sato,et al.  Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy , 2008, 0812.0663.

[46]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[47]  A. Damascelli,et al.  Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors , 2003, cond-mat/0312570.

[48]  H. Takagi,et al.  Fermi Surface Sheet-Dependent Superconductivity in 2H-NbSe2 , 2001, Science.

[49]  M. R. Norman,et al.  Phenomenology of the low-energy spectral function in high-T c superconductors , 1998 .