Semantic Wonder Cloud: Exploratory Search in DBpedia

Inspired by the Google Wonder Wheel, in this paper we present Semantic Wonder Cloud (SWOC): a tool that helps users in knowledge exploration within the DBpedia dataset by adopting a hybrid approach. We describe both the architecture and the user interface. The system exploits not only pure semantic connections in the underlying RDF graph but it mixes the meaning of such information with external non-semantic knowledge sources, such as web search engines and tagging systems. Semantic Wonder Cloud allows the user to explore the relations between resources of knowledge domain via a simple and intuitive graphical interface.

[1]  Dean Allemang,et al.  The Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006, Proceedings , 2006, SEMWEB.

[2]  John Grundy,et al.  Interactive Visualization Tools for Exploring the Semantic Graph of Large Knowledge Spaces , 2009 .

[3]  Amit P. Sheth,et al.  RDF data exploration and visualization , 2007, CIMS '07.

[4]  Ben Shneiderman,et al.  The Craft of Information Visualization: Readings and Reflections , 2003 .

[5]  David R. Karger,et al.  The Pathetic Fallacy of RDF , 2006 .

[6]  Gustavo Rossi,et al.  Web Engineering , 2001, Lecture Notes in Computer Science.

[7]  Abraham Bernstein,et al.  The Semantic Web - ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings , 2009, SEMWEB.

[8]  Christian Bizer,et al.  Faceted Wikipedia Search , 2010, BIS.

[9]  Frank van Harmelen,et al.  Exploring large document repositories with RDF technology: the DOPE project , 2004, IEEE Intelligent Systems.

[10]  Gary Marchionini,et al.  Finding facts vs. browsing knowledge in hypertext systems , 1988, Computer.

[11]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[12]  G Stix,et al.  The mice that warred. , 2001, Scientific American.

[13]  Mark S. Ackerman,et al.  The perfect search engine is not enough: a study of orienteering behavior in directed search , 2004, CHI.

[14]  Amit P. Sheth,et al.  Context-Aware Semantic Association Ranking , 2003, SWDB.

[15]  Fabian M. Suchanek,et al.  Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia , 2007 .

[16]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[17]  Jennifer Golbeck,et al.  Visualization of semantic metadata and ontologies , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[18]  Chaomei Chen,et al.  Visualizing the Semantic Web: XML-Based Internet and Information Visualization, 2nd Edition , 2004, Visualizing the Semantic Web, 2nd Edition.

[19]  Tommaso Di Noia,et al.  Ranking the Linked Data: The Case of DBpedia , 2010, ICWE.

[20]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[21]  Marti A. Hearst Clustering versus faceted categories for information exploration , 2006, Commun. ACM.

[22]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[23]  James A. Hendler,et al.  The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities , 2001 .

[24]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[25]  Daniela Petrelli,et al.  Multi Visualization and Dynamic Query for Effective Exploration of Semantic Data , 2009, SEMWEB.

[26]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[27]  Eyal Oren,et al.  Extending Faceted Navigation for RDF Data , 2006, SEMWEB.

[28]  Kevin Li,et al.  Faceted metadata for image search and browsing , 2003, CHI '03.